&
&
>
> O OB
Vbépd£§? *r€§de§> $5.00

Pu P P o P
Pn P P Pu P P P P P Pn P Pu Pu Pu P P P P P P P
Pu P o Pu P P P Pu P e Y P P P P P P P

u |

msﬂﬂf

GONTROL
e\l EEEEE

e P) r
ba Pa | m——
’u Pu Pu

INTERRUPT

CONTROL
UNIT
.
. Pa Pu Pu P P Py P
" Pu P P P P P

M

ol pal ol ol |l
RS EE

C(C(CUNE
T
€40 (€T,

pu o o ol oy o i o

qc

T
€T 4T (€ €(E(e0(¢ (€

T (CLNE(T(Ty
&

T
T

pal oy o'

P P P P P Py P P P
1 P o P P P P P P P
. P P P P P P P P
P o P P Py P P Py P
AN
m o Pu bu P P P P e

= ' Pu bu bu bu bu Pu Pu Pu

o
o
€T (T (T

pl oy o'
pal ol o

TABLE OF CONTENTS

INTRODUCTION i 1 FIGURES (Cont.)
1. ENGINEERING MANAGEMENT 2 9. ALU Logic Mode Functions 21
1. SPECIFICATION, 4 10.. ALU Arithmetic Mode Functions 21
Design Goalsoiiin.n... 4 11. Detailed Logic Diagram Condition Code
Main Memory Formats 4 Generator, Register and Multiplexer ..-....... 22
Instruction Requirements 5 12. Detailed Logic Diagram Carry Generator
Addressing Methods 5 and Flip-Flopo u.. 22
Input-Output, 6 13. Detailed Logic Diagram Shift Linkages 22
Main Memoryt 5 14. Logical Shift Linkages 23
Control Panel, 6 15. Rotate Shift Linkages 23
1. ARCHITECTURE i 7 16. Shift Linkage Instruction, Multiplexer
V. MACHINE INSTRUCTIONS 9 and Control Functions 23
Arithmetic, 9 17. ALU Microinstruction Control Fields 24
LOgiC ..o 10 18. ALU Microinstruction Control Examples 25
Shift Instructions 11 19. MSI Program Control Unit Block Diagram 27
Data Movement 12 20. LSI Program Control Unit Block Diagram. 28
ProgramControl 12 21. Microprogram Sequencer Block Diagram. 29
Input-Output, 13 22. Am2911 Microsequencer Block Diagram. 30
Executive, 14 23. PCU Microinstruction Control PROM 31
V. ARITHMETICLOGICUNIT 16 24. Am2909 and Am2911 Control Signal
The Am2901 i 17 SumMMary e 31
Detailed Logic.............ooouin... 20 25. Memory Subsystem Block Diagram 32
Microprogram Control of the ALU 21 26. Am9130 Block Diagram 33
Vi, PROGRAM CONTROL UNIT 27 27. Am9140 Block Diagram 33
Am2909/Am2911 Microsequencers 27 28. Interrupt Control Unit Block Diagram 35
Detailed Logic and Micro Control 30 29. Am2914 Vectored Priority Interrupt
VII. MEMORY SYSTEM 32 Encoder Block Diagram 36
Am9130 and Am9140 4k X 1 Static RAMs . 32 30. Microinstruction Set for Am2914 Priority
Detailed Logicu.... 34 Interrupt Circuit 37
VIIL. INTERRUPT CONTROL UNIT. 35 33. Am2913 Function Diagram &
Am2914 .. e 35 TruthTableso .. 37
Am2913 L. 36 34. Am29705 Logic Diagram 38
Am29705 36 35. Am29705 Function Tables 38
Detailed Logic...........ovviiennna... 38 36. ICU Microinstruction Format 39
1X. DIRECT MEMORY ACCESS 40 37. Direct Memory Access Controller 40
X. THE STATEMACHINE 41 38. Central Processor State Transition
X1, COMPUTER CONTROL UNIT 42 Diagramt e 41
Instruction Decoding 42 39. Computer Control Unit Block Diagram 42
Microprogram Sequencing. 43 40. Micro-subroutine Starting Address
DataBusControlccoiuuninn.. 45 Block Diagramc.ccueuo..... 43
Microprogram Formatting. 45 41. Instruction Register/Microprogram Register
ACKNOWLEDGEMENT SElECt LOGIC - -+ v v e eeeee e 44
FIGURES 42. Am2909 Microprogram Sequencer Block
1. Instruction Types 6 DIagram ..o nve e e 44
2. Co.mputer Arch.|tectu.re S 7 43. Timing, Synchronization, and Control
3. Arithmetlc Logic Un.|t Block Diagram 16 Logic SChematico 45
4. Detailed Am2901 Microprocessor Block . .
Diagramcouii i 18 44. Am2909 Microprogram Instructions and
5. ALU Source Operand Control 19 PROM Pattern.....................oooee 46
6. ALU FunctionControl 19 45. Data Bus Control Logic Technique 47
7. ALU Destination Control 19 46. Bus Control and Clock Distribution Logic 47
8. Source Operand and ALU Function 47. Microprogram Formats 47
MatriX .o e e, 20 48. Microprogramming Form IBC

Advanced Micro Devices can not assume responsibility for use of any circuitry described other than circuitry entirely embodied in an Advanced Micro
Devices’ product.

Copyright 1976 by Advanced Micro Devices, Inc.

INTRODUCTION

The purpose of this Application Note is to acquaint the reader with some of -the many facets of computer
design. Beginning with a statement of purpose, we will consider the specification of a computer from a func-
tional standpoint. Presentation of a modular architecture will then help the designer to understand the flow of
data and instructions through the system and to help resolve the inevitable problems of resource contention
(the desire to use a bus or functional subsystem for more than one purpose at a time). From a management
perspective, early definition of the architecture modules allows a number of people to work on the design
of different controlled subsystems concurrently.

The use, or intended use of a microcomputer will be illuminated by its instruction set, the form or forms of its
instructions, and the form and format of its data words. The computer hardware, then, must satisfy all of the
functional requirements of the machine instructions. (In a stored-program computer, the “‘machine instruc-
tions’’ are those system control statements that reside in the main memory and are fetched and executed by
the computer control unit.)

Having defined the instruction set, the various controlled subsystem components may be designed. The state
transition diagrams may then be specified as can the control signal requirements of the system controller.

MICROPROGRAMMED MACHINES

The Original Equipment Manufacturer, OEM, has a number of goals that he would like to satisfy in the design
of any new product. He must first satisfy his current requirements; however, he would like to build into his
equipment the ability to expand the machine, increase its speed or thru-put, and allow for additional functions
and modernization. Secondly, very few machines are ever designed without some flaw that escapes the manu-
facturer’s attention until it gets into the hands of the users in the field; the ability to change the machine
without extensive engineering change orders is paramount. A machine that is dedicated to a specific task or a
class of tasks, rather than a general purpose processor is becoming the rule rather than the exception as hard-
ware costs become less important than software costs. It is very desirable, then, to be able to build a processor
that is capable of executing very complex tasks without a large stored program; perhaps, a single macro-
instruction will suffice. The OEM may have a previous generation of hardware that was implemented with
random logic in the form of MSI and SSI elements. Because of a large investment in software, it would be
desirable to implement the same instruction set using newer technology with an emulation in hardware of the
previous machine.

A microprogrammed processor will allow the manufacturer the flexibility to satisfy any or all of those
requirements. Rather than trying to define a microprogrammed machine in an elegant, abstract way, the
concepts of the microprogram will be demonstrated by example.

CHAPTER |

ENGINEERING MANAGEMENT

From an engineering management standpoint it is most im-
portant that the following events occur in the order presented:
production of a written specification, an architectural design,
derivation of a management schedule based on available
resources, the implementation of the various architectural
blocks, system integration, an engineering review, redesign,
and documentation. A management review should take place
at each of these milestones before the next phase of the
development is started.

Specification

It is extremely important that a written specification for the
system is completed and agreed upon by all interested parties
before any other work is initiated. Otherwise, the program is
bound to be extremely inefficient in manpower, will probably
require much more redesign activity, and may be very demor-
alizing to the technical staff. Further, there will be no way to
measure progress.

In the definition of a computer, the specification may be
delineated by at least the following sections: Design Goals,
Formats, Instruction Requirements, Addressing Methods,
Input-Output, Memory, and Control Panel. The form of the
specification may change from company -to -company, or
even from design -to-design within one company, but the
intent of the specification should remain the same. The
purpose of the specification is to provide the philosophy
behind the product, a complete functional description, and
any important limitations that are to be imposed. This is a
reference document for the design, marketing, production,
and management staffs.

Architecture

The architectural design will provide a description of each
of the controlled functions in the machine, each of the buses
in the system and the order of functional module contention
resolution, if any, and the system controller.

Each of the controlled functions, e.g., the Arithmetic Logic
Unit, should be described functionally, and each storage device
within the functional block should be described. The Computer
Control Unit should be presented in a similar manner.

The buses, and the approach to bus control that will be imple-
mented should be described from a functional viewpoint.

Management Schedule

Having defined the architectural blocks of the system, it is
then possible to start the design of the system. While the
controlled elements of the system are being conceptualized the
Computer Control Unit and the memory system timing
philosophies should be worked on in detail. Ultimately, this
portion of the design will provide the speed limitation on
the system. Considering the selected architecture, each class
of instruction should be flow-charted as a general case and a
state-transition graph for the processor should be derived.
Each machine instruction to be implemented should then be
examined carefully to illuminate the demands placed on each
subsystem; these demands should be tabulated by subsystem

so that the designer of each subsystem understands what his
portion of the system must be capable of doing. This point
in the development cycle is an excellent time for a program
review to determine whether the design goals can be met with
the approach that has been initiated.

The implementation of the various architectural blocks should
then be scheduled. These tasks are very straight-forward and
should provide no surprises if the initial conceptual work was
done carefully. Each subsystem should be completely tested
by itself before any attempt is made to connect the subsystems
together.

After completing the subsystem tests, the subsystems should
be integrated (connected together using common buses, clocks,
and control signals). From a management standpoint, system
integration is very inefficient. Except for a very large system
only one or two engineers can work on the complete system
tests. Generally, the engineer who designed the Computer
Control Unit and one other senior engineer should be assigned
to this task. This leaves the remainder of the project staff
idling without any direct contribution to the system design
and test effort. This is an excellent time to start the documen-
tation effort and liaison with the various production groups.

The engineering review really consists of two separate reviews
separated in time. The first review is internal to the engineering
department and consists of design trade-offs. The second review
is a company-wide, management level review which should
consider the effects of the design on incoming inspection and
Q.A., purchasing, automatic test, mechanical and electrical
assembly, final test, marketing, sales, engineering support, field
service, etc. The technically oriented business decisions should
also be addressed during the second meeting. The level and
cost of inventory, the manufacturing cost of the product, the
marketing related support costs, reliability and warranty expo-
sure, spare parts inventory, time to repair and field service
costs, cost of operating and maintenance supplies, installation
time and cost, environmental constraints, size, power con-
sumption (can it be installed without having to rewire the
installation facility), all of the human factors and esthetic
considerations, packaging, effect on installed air conditioning
and/or requirements for special cooling, “brownout’ protec-
tion, UL, CSA, IEC, etc., liability. From the corporate view-
point, is the current staff, facility, and equipment capable of
supporting manufacturing and selling of the product? Quite
often the business considerations significantly outweigh the
technical considerations. It is an exceptional , engineering
department, or a poor management team, that is capable of
passing this second engineering review. For this reason it is
important that a redesign period be scheduled into the pro-
gram plan.

How much time should be scheduled for the redesign? This
is very hard to judge and will change from company to com-
pany, but the time for redesign is usually controlled directly
by the longest lead-time requirement for any non-design
related task or product. For example, packaging components
typically have longer lead-times associated with them than de¢
standard IC's. In any case the engineering redesign time

estimate, and the longest lead-time estimate, and the engi-
neering reimplementation time, and a less stringent engineering
review time might be summed together to provide a conser-
vative redesign task.

Good quality, complete documentation may mean the dif-
ference between financial success and failure. The documen-
tation effort should continue with the direct support of the
original engineering team. The product build-up, “‘explosion,”
starting with the highest level assembly and terminating with

the lowest level assembly is important because it will provide
purchasing order quantities that they may purchase against a
forecast demand. This documentation should also include an
approved vendor list of each component.

Schematics, mechanical layouts, cabling diagrams, and any
other information necessary to produce, test, trouble-shoot,
purchase components, etc., must also be supplied during this
phase of the development. A mechanism for instituting engi-
neering change orders must also be provided.

CHAPTER Il

SPECIFICATION OF THE MACHINE

Because this application note is being written for a broad
spectrum of users and users’ requirements, this specification
and the resulting hardware design may not be the “best”
implementation of a modern processor. There are a number of
excursions from what might be considered an optimum design
to illustrate technique or design trade-offs.

DESIGN GOALS

The intention of this design is to provide a third generation
computer with a general-purpose instruction set that is opti-
mized for high-speed input-output operations.

Function

A typical functional specification is presented here for the
purpose of presenting an application requirement.

This processor shall be capable of interfacing to 12-bit, 2's
complement analog-to-digital and digital-to-analog converters
with 500ns conversion times. Further, the ability to interface
with dual synchronous or asynchronous communications lines
operating up to 50 kilo-baud per channel and two parallel,
full word-length channels directly connected to a host com-
puter. (These interface designs are not part of this application
note.)

The initial design must provide for 2's complement add and
subtract, the basic logic functions, indexed data movement
instructions and a set of executive level /O instructions that
will provide for minimum service or interrupt request overhead.
The computer must allow for expansion of its basic instruction
set and for the addition, in microcode, of statistical and
communications protocol algorithms.

At least one channel of direct memory access, DMA, and
16-levels of vectored priority interrupt are required. The
processor must be capable of acknowledging and processing
an interrupt without polling, calculating, or otherwise deter-
mining which channel caused the interrupt. The DMA function
must be slaved to the interrupt controller. That is, when an
interrupt request occurs either a vectored interrupt or a direct
memory access is initiated.

The input-output channel interface must be very simple. All
service contention (requests for input-output service generated
by multiple data channels at the same time) will be resolved in
the interrupt controller.

Speed

The main memory full cycle time must be less than or equal
to the 500ns data conversion times including-address decoding,
data source and destination control and processor overhead
functions.

The processor cycle time should be the minimum necessary to
service the various controlled functions without variable or
asynchronous clock functions. All of the central processor
subsystems will be synchronous, but the memory and input-
output controllers will be required to furnish a ready signal

after each attempt to read or write has been satisfied. This
will permit memory and peripheral devices of different speeds
to be attached to the processor.

Electrical

All of the circuit elements must run off a single five volt power
supply only; current requirements will be determined during
the design effort. Other voltages will be supplied for control of
peripheral devices only.

Mechanical

A 9x12 inch printed circuit board format will be used. Two
2x36 edge connectors will be used on the bottom edge of the
card (along the major dimension).

Approximately 78 sixteen-pin integrated circuits, or an equiva-
lent number of larger packages, may be mounted on a single,
two-layer printed circuit board if cables are connected to the
top of the card. Otherwise, about 96 sixteen-pin packages, or
equivalent, may be installed on one board. This circuit density
is around one 16-pin package per square inch,

If a four-layer printed circuit board is used, with the two
buried layers being power and ground distribution, on board
decoupling and filter capacitors may be removed and the
circuit density may be increased to one 16-pin package per
0.75 square inches. This yields a package count of 101 per
board or 128 per board depending on whether or not cables
are connected to the top of the board.

Cooling will be convective or forced-air depending upon the
power density on the boards. Printed circuit board spacing will
also depend on the power density and the ambient, intake air
supply temperature.

Technology

Due to the speed requirement and the single 5V power supply
availability, a bipolar integrated circuit technology must be
used for the digital logic. To reduce the current requirement,
low-power Schottky devices will be used where possible.
Similarly, low-power, high-speed memory devices that are
designed in static, n-channel MOS technology should be
utilized for main memory.

MAIN MEMORY FORMATS

Main memory will contain instruction and data information.
To maximize the data transfer role and the instruction effi-
ciency a main memory word size of 16-bits is specified. No
parity bit will be used. The bits will be numbered from 0to 15.

Data Format

The main memory arithmetic data format will be integer, 2"
complement. The least significant bit will be 0 and the mos
significant bit 14, Bit 15 will be the sign bit. With the excep
tion of the sign bit, the binary weight of any bit position wil
be 2, raised to the power of the bit position. The sign bit ha
the weight -215,

Logical data formats will include 16-bit words and 8-bit bytes.
Two 8-bit bytes may be stored in a single main memory word.
The lower byte is contained in memory bit positions 0 to 7,
and the upper byte is contained in bit positions 8 to 15,

Instruction Format

Machine instructions will consist of one or two main memory
words. (The general format will be similar to an I1BM 360
instruction.) There will be two single word instruction formats
and two double word instruction formats: Register-to-Register
(RR), Special Format (SF), Register Indexed (RX), and
Register Immediate (RI).

The operation to be performed by the current instruction will
reside in the upper byte of the memory word, bits 8 through
15, providing for 256 different instructions. The remainder of
the first word, and the second word if it exists, will be used for
operand(s). (Operands provide data, addresses, or data source
and destination information relating to the current instruction.)

INSTRUCTION REQUIREMENTS

Machine instructions may be broken down into a number of
general functional classes: arithmetic, logic, shift, data move-
ment, program control (branch), input-output, and executive.
It is best to think of the instructions in these classes because
it will be easier to define, implement, and test the instructions
necessary to complete the tasks imposed on the product by its
work environment.

Arithmetic
The following arithmetic functions are required:

Add

Add with Carry

Subtract

Subtract with Carry
Arithmetic Compare

Two’s Complement (Negate)
Increment

Decrement

Logic

The foltowing logical functions are required:
e And

Inclusive-Or

Exclusive-Or

Logical Compare (NOR)

Complement

Shift
The following shift functions are required:

Shift Register Left

Shift Register Right

Shift Register Left with Carry
Shift Register Right with Carry
Rotate Register Left

Rotate Register Right

Rotate Register Left with Carry
Rotate Register Right with Carry

Data Movement
The following data movement instructions are required:

® Load Register from Memory
@ Store Register in Memory
® Transfer from Register-to-Register

Program Control
The following program control instructions are required:

® Jump
® Jump-to-Subroutine
® Return

Input-Output
The following input-output instructions are required:

® Read Data into Register
Read Status into Register
Write Data from Register
Write Status from Register

Executive

The executive instructions are difficult to define in a prelimi-
nary specification because they relate to the processor design,
not to the tasks the processor must accomplish, All of the
machine instructions necessary to load interrupt vectors, direct
memory addresses and word counts, and interrupt masks and
pointers must be included in this set of instructions, as well as
enable and disable interrupt and DMA commands, etc.

ADDRESSING METHODS

The program control and data addressing techniques available
in the machine level programs will depend upon the instruction
class that is used.

In the register-to-register instruction, RR, Figure 1a, the data
source and destination are both register addresses; R1 and Ro.
Very similar to the RR instruction is the special-function, SF,
Figure 1b. The data to be tested, manipulated, compared, or
otherwise operated on is selected by the operand field R{. The
second field, F, is used to specify a particular function.

In the case of the register-indexed instruction, RX, Figure 1c,
the first operand is specjfied by field Ry and the second
operand is specified by the sum of the address field, word 2,
and the contents of the general purpose register selected for
use as an index register by the field X. The zero-th register
may not be used as an index register. If zero is specified in the
X field the effective address of the second operand is the
address field contents of the second instruction word.

The register-immediate instruction, RI, Figure 1d, is very
similar to the RX instruction except the second operand data
is already contained in the A-field (the second instruction
word). As in the RX instruction, the A-field of the RI instruc-
tion will be added to the contents of the register specified by
the X-field, but, instead of forming an effective address for the
second operand, the result of the summation is literal data that
will be used immediately as the second operand. Again, if X
is zero, the second word is not modified prior to use.

Next instruction addressing (program control) will be accom-
plished with a program counter, PC, a push-pop stack, STACK,
and a set of program modification instructions. The program

modification instructions jump, jump-to-subroutine, and
return-from-subroutine will all affect the next instruction
address by controlling either the PC or the STACK.

INPUT-OUTPUT

Peripheral controllers will be self-contained, high-speed, parallel
transfer devices that will be capable of both programmed and
automatic operation. All hardware necessary to control the
peripheral device, request CPU service and handle the transfer
of data will be contained in the controller.

Programmed 1/0

The peripheral controller will be capable of handling two
output instructions: Output Data and Output Command. The
device address will be impressed on the eight lower-order
address bus lines and the data or command word will be im-
posed on the system data bus.

The processor will expect a ready signal from the peripheral
controller before it will execute a programmed 1/O instruction.
If the 1/0 port is not ready when the instruction execution is
attempted, it will go into a wait state until the device ready
signal can be synchronized with the Computer Control Unit.

Automatic 1/0

Automatic I/0 will consist of three different types of input-
output service requests: vectored interrupt, cycle stealing
direct memory access, and CPU freeze direct memory access.
There will be 16-levels of priority encoded service request, the
necessary contention logic, and 16-levels of request acknow-
edged circuitry. All service requests will be processed through
the Interrupt Control Unit.

An interrupt request will be serviced after the current instruc-
tion being executed is finished, and before the next instruction
is fetched. The PC will be pushed onto the stack and a vector
address in main memory, previously assigned to a particular
level of interrupt, will be loaded into the PC. Execution of a
return from interrupt instruction will cause the stack to be
popped onto the PC and normal processing will resume.

Cycle stealing Direct Memory Access will not have to wait for
an instruction to be concluded to be given permission to steal
a memory cycle. If the memory is not being used during a
given cycle the DMA controller is free to attempt an access
during which time interrupts may not be serviced. This mode
of operation only permits the reading or writing of a single
word, and then the DMA controller must relinquish system
control.

Block transfer Direct Memory Access will wait for service in
the same manner that an Interrupt Request waits. When the
current instruction being executed is complete, the DMA
controller will usurp control of the data bus and peripheral
processor until the entire DMA sequence is satisfied. A block
transfer DMA operation may not be interrupted.

MAIN MEMORY

Main memory will consist of static RAM'’s organized in 4096
words by 16-bits. Up to 16 of these memory blocks may be
directly addressed by any instruction or control unit, without
paging, for a total addressing range of 64K words.

The memory will be built from NMOS static RAM's using a
single power supply of +5Vdc and providing an access time of
200ns or less and a total cycle time of 400ns or less. The
memory system must be capable of providing a READY flag
in response to a read or write request.

The maximum load presented to any data bus or address bus
by any single memory board will be 0.4mA or less. A low-
capacitance, low-current bus will be maintained.

CONTROL PANEL

A system control panel will be provided to aid both the logic
designer and the programmer in implementing and debugging
their tasks. As well as examining or writing main memory and
monitoring CPU status, the control panel shall be capable of
loading programs, interrupting or restarting programs, pausing
and continuing tasks, check-point/restart, etc.

OP CODE Ry Ry

OP CODE Ry F

15 8'7 4'3 0

a) Register-to-Register Instruction, RR

15 8'7 4'3 0

b) Special Function Instruction, SF

je———————WORD 1 WORD 2 -
OP CODE Ry X ADDRESS
15 8'7 4'3 0"15 0
c) Register Indexed Instruction, RX
e WORD 1 WORD 2 -]
OP CODE Ry X IMMEDIATE OPERAND
15 8'7 4'3 0'15 0

d) Register Immediate Instruction, Rl

Figure 1. Instruction Types.

CHAPTER Il
ARCHITECTURE

The computer architecture is depicted in Figure 2. There are
two major buses in the processor: A 16-bit wide address bus,
and a 16-bit wide data bus. There is a third bus in the system,
the control bus, but it will be discussed later with the computer
control unit. The data and address buses are three-state buses;
each system element that connects to a bus will present.one
Am25LS, low-power Schottky unit load to the bus.

Arithmetic Logic Unit

The Arithmetic Logic Unit, ALU, will be used to perform all
of the combinatorial arithmetic and logic functions as well as
the shift and rotate instructions. Arithmetic and logical com-
parisons, 1's and 2's complement, and incrementing and
decrementing will be accomplished in the ALU. The ALU
will also contain 16 general purpose registers and a Q-register
for use as a scratch pad or for long shift sequences. The ALU
may act as either a source or a destination for data on the
data bus.

INSTRUCTION
REGISTER

n\)
K § GENERAL PURPOSE
REGISTERS

COMPUTER R

7~ CONTROL

UNIT ARITHMETIC/LOGIC
UNIT

MICROPROGRAM
REGISTER 4

&)

SUBROUTINE }
STACK

#) 4 o
PROGRAM COUNTER | ¢ ...}

CONDITION CODE _]§ ™\
AND < x
SYNC. LOGIC e
]
MEMORY ADDRESS
CLOCKS REGISTER |
/
WORD COUNTER
INTERRUPT DIRECT MEMORY
™| CONTROL UNIT ACCESS CONTROLLER

BASE ADDRESS
REGISTER

—

MEMORY

ADDRESS BUS

\.] conTrOL
\

PANEL

TO INTERFACE
CONTROLLERS

Figure 2. Computer Architecture.

Program Control Unit

The Program Control Unit, PCU, consists of three important
elements: the Program Counter, PC, the Memory Address
Register, MAR, and the Subroutine Stack. When the system'’s
primary power is turned on, the PC is cleared to 0. From that
time on the PC will point to (contain the address of) the next
instruction to be fetched and executed. The MAR is used to
hold the second operand of an instruction or the effective
address of the second operand which was calculated in the
ALU. In either case the MAR is loaded from the data bus.
Either the PC or the MAR is enabled onto the address bus at
the start of any memory cycle.

There are three types of instruction that the PCU will execute
when it is not merely incrementally stepping its way through
a program of instructions. They are called program modifica-
tion instructions and consist of: Jump, Jump-to-Subroutine,
and Return.

The_Jump instruction is a two word instruction. The first
word, with the operation code “Jump,” is loaded into the
instruction register and decoded. If the instruction is a register
indexed, RX, type and the condition code is true, an effective
jump address will be calculated and the contents of that address
will be jammed into the PC. I the instruction type is register
immediate, RI, the second word of the instruction will be
added to the index value and directly loaded into the PC. Once
the jump takes place the PC will continue incrementing its way
through program storage until another program modification
instruction is encountered or its largest value has been reached.
The Jump-to-Subroutine instruction is very similar except that
the Stack is used. If the condition code in the first word of the
instruction is true, the contents of the PC are pushed onto the
Last-In-First-Out, (LIFO) Subroutine Stack. The address of the
subroutine, having been derived in the same manner as the
Jump address, is loaded into the PC and processing continues.
The Return instruction is executed at the end of a subroutine
sequence and causes the last entry into the Stack to be popped
onto the PC, thereby returning the program control to the
address where the subroutine was called plus one.

Memory

With a total memory size of 64K x 16 we will look at the me-
chanical design goal of 12 x 9 inch printed circuit boards."It
immediately becomes obvious that a single board will hold a
16K x 16 memory module along with its associated decoders,
buffers, and transceivers. Modules of different speed memories
may be mixed in a single system due to an asynchronous
memory ready signal which is synchronized by the CCU.
CCu = (omprutesr e f

/ Ca

Con'?

Interrupt Control Unit

The ICU is capable of receiving 16 levels of interrupt request
from peripheral controllers. Each of those interrupt request
lines is capable of being masked (enabled or disabled), and
cleared under program control. Further, a minimum interrupt
level, or fence, may be implemented with an instruction. The
highest level interrupt will win the contention race and will be
presented in the form of 4-bit interrupt address vector.

The 4-bit vector is presented to a 16 word by_16-bit two port
RAM which is loaded under program control with interrupt
vector addresses. The data input port and the “‘B” output port
are connected to the data bus. The /A’ output port is used to
detect a DMA attempt.

When an interrupt request is received, the CCU grants interrupt
permission at a convenient point in the microinstruction
sequence. The interrupt acknowledge is transmitted back to
the requesting peripheral controller and the interrupt vector
is enabled onto the system data bus. With the interrupt vector
as the address source the PCU is commanded to do a Jump-to-
Subroutine. When the interrupt program is finished, a Return-
from-Interrupt will cause the interrupt to be cleared and the
PCU to do a pop. Normal data processing will continue.

The only invalid interrupt vector address is FFFF4g, which is
the highest address the machine is capable of handling. This
address is reserved for DMA linkages. If the DMA linkage
condition is detected on the “A’’ output port of the interrupt
vector RAM, control is passed to the DMA controller.

Direct Memory Aceess

A single DMA controller channel is planned for this machine
although any number may be added. For example, if 16 levels
of DMA were desired, 16 interrupt vector addresses could be
invalidated, i.e., FFFO4g through FFFF4g. (The DMA con-
troller may reside either within the CPU, or on the interface
circuit board.)

The DMA consists of two 16-bit binary counters with a
terminal count detector. One of the counters is called the

address counter, and its outputs are connected to the address
bus through a three-state buffer. The other is the word tranfer
counter. Both counters’ parallel inputs are connected to the
data bus, so that they may be initialized.

The address counter is initially loaded with the address to, or
from, which the first data transfer will take place, depending
upon the direction of the data flow. The requesting peripheral
controller will be the source of the destination. The word
counter is initially loaded with the 2’s complement of the
number of words to be transferred. Each time a data transfer
takes place, both the address and word counters are incre-
mented simultaneously. When the word counter reaches its
terminal count the last DMA transfer will be completed.

Computer Control Unit

The CCU consists of an instruction register whose input port is
connected to the data bus and whose Op code output port is
connected to a starting address PROM. The output of the
starting address PROM is connected to the direct input of a
microprogram sequencer, the output of which drives a micro-
program PROM. The microprogram memory is 256 words deep
by 40-bits wide which is sufficient for the present machine
design. A pipeline register is used to hold the current micro-
instruction to increase the system thru-put.

The outputs from the Micro Program Register, MPR, control
each of the architectural blocks. In fact, some of the MPR
information is fed back to control the CCU. The system clocks,
condition code and synchronization logic and control panel
logic are all components of the CCU.

CHAPTER IV
MACHINE INSTRUCTIONS

This section presents the machine instructions that are to be
implemented in the processor. They exist in four instruction
types (Figure 1) and seven instruction classes. The four types
include register-register, special function, register indexed, and
register immediate. The seven classes include arithmetic, logic,
shift, data movement, program control, input-output and
executive. Not all instructions will be implemented in all four
types because they either do not make much sense or are
redundant, or they have little or no value. In the symbolic
descriptions, the expression on the left of the arrow is the
location or device to be changed. Parentheses and square
brackets denote ‘‘the contents of’’; braces indicate terms
which are collected prior to use.

ARITHMETIC

All of the instructions in this class are executed in the ALU
portion of the computer. The condition codes available in
the ALU include carry, “C,”* the most significant bit, 'S,”
overflow, “O,” word contents zero, “Z,” upper byte zero,
“U,” lower byte zero, “L,” A greater than B, “A,’”” and A less
than B, ““B.” The condition codes “A’* and “B’’ are only valid
after a subtract function of the form A minus B. Condition

Add Register Indexed with Carry, RX

ARC

R4

15

8

7

4

Ry < (R1)+(Rp)+C

Add Registers Indexed with Carry, RX

AXC

Ry

X

15

8

7

4

3

R1« (R))+[A+(X)]+C

0

Add Register Immediate with Carry, Rl

codes only change after the execution of ALU instructions. AlC Ry X
15 87 4°3 0'15
ADD Ry < (Ry)+A+(X)+C
Add Registers, RR
ADR Ry | Ry
15 87 4'3 0
SUBTRACT
R1 < (R1) + (Rg)
Subtract Registers, RR
Add Register Indexed, RX SUR Ry Ry
ARX Ry X 15 8 7 4 0
15 8'7 4'3 0'15 R1 < (R1) ~(R2)
R1< (R7)+[A+(X)]
Add Register Imrnediate, R| Subtract Register Indexed, RX
AR Ry X SRX Ry X
15 87 4 3 0'15 15 87 4°3 0"15
R1 < (R1) + A+ (X) R1 < (R1) = [A+(X)]
Add Register to Memory, RX
Subtract Register Immediate, RI
ARM Ry X
15 877 473 o'1s SRI Ry X
{A+(X)}<—(R1)+[A+(X)] 15 877 4'3 o0'15

Note: For all Rl and RX formats, if X = 0 then (X) =0.

R1 < (R1) —{A + (X)}

Subtract Registers with Borrow, RR

Increment Memory Indexed, RX

SRC Ry Ry INCM Ry X
15 87 4'3 0 18 87 4°3 0'15
R1 < (Rq) - (Rg) = C {a+ xferas oo+
Subtract Registers Indexed with Borrow, RX Decrement Register, RR
SXC Ry X DECR Ry 82
15 g8'7 4'3 0'1s 15 8'7 4'3 o
R1< (Ry) -[A+(X)]-C R1 < (R7) =1

COMPARE

Arithmetic Compare Registers, RR

CAR Ry | Ry

15 8'7 4'3 0
CC < (R1) : (Rg)

Arithmetic Compare Register Indexed, RX

CAX Ry X

1% 8'7 4'3 0'1s5
CC <« (R1) : [A +(X)]

Arithmetic Compare Register Immediate, Rl

CAl

Ry

X

15

8

7

cC « (Rq) :{A+(x)}

COMPLEMENT

Two'’s Complement Register, RR

TWOS

Ry

R2

15

8

R« (Rp)+1

1

4

3

9

INCREMENT AND DECREMENT

Increment Register, RR

INCR Ry

Ry

16

R1 < (Rq) +1

Note: For all Rl and RX formats, if X = then (X) =0.

7

4

10

Decrement Memory Indexed, RX

DECM Ry X A

15 87 4°3 0°15 0
{a+ oaferas oy -1

LOGIC

All of the instructions in the lagic class are executed in the
ALU portion of the computer. The same condition codes that
were presented with the arithmetic instructions are incumbent
on the logic instruetions. The condition codes only change
after the execution of an ALU instructjon.

AND
And Registers, RR

NRR Ry | Ry
15 87 4'3 0

R1<« (R1) - AND. (R2)

And Registers Indexed, RX

NRX

Ry

X

15

8

7

4

3

0" 15

R1+ (R1) - AND. [A +(X)]

And Registers Immediate, RI

NRI

Rq

X

15

8

7

4

3

R1 < (R1) .AND.{A+(X)

015

}

INCLUSIVE-OR
Or Registers, RR

ORR

R4

15

R1<« (R1) . OR. (R2)

8

7

4

Or Register Indexed, RX

ORX

Ry

15

7

4

Rq <« (R1) .OR. [A +(X)]

Or Register Immediate, R

ORI

Ry

15

8

7

4

3

R1<—(R1).OR.{A+(X)}

EXCLUSIVE-OR

Exclusive-Or Registers, RR

015

XRR

Ry

R2

15

8

7

4

3

R1 « (R1) . EXOR. (R2)

0

Exclusive-Or Regsiter Indexed, RX

XRX

Ry

X

15

8

7

4

3

015

R1 < (R1) . EXOR. [A +(X)]

Exclusive-Or Register Immediate, RI

XRI

Ry

X

15

8

7

4

3

015

R1< (R1) - EXOR.{A + (x)}

LOGICAL COMPARE

Logical Compare Registers, RR

CLR

R4

Rz

15

8

7

CC < (R1) : (R9)

4

3

0

Logical Compare Register Indexed, RX

CLX

Ry

X

15

8

7

4

CC <« (Ry) : [A+(X]]

Logical Compare Register Immediate, RI

0

cL!

Ry

X

15

8

7

4

cCc < (Ry) :{A+(x)}

Note: For all Rl and RX formats, if X = 0 then (X) = 0.

COMPLEMENT

Complement Register, RR

CMPL

Ry Ry

15 8
R1 < (R7)

7

4°3 O

SHIFT INSTRUCTIONS

All of the shift instructions are executed in the ALU portion
of the computer. Only the carry and zero condition codes may
be affected by these instructions.

LOGICAL SHIFT
Shift Register Left, SF

‘,——— 15)

SRL

g

Each bit in the register selected by Ry is shifted left N places.
The register is filled with zeroes.

Shift Register Left with Carry, SF

‘/——- Cc

Shift Register Right, SF

"

ROTATE

Rotate Register Right, SF

SRLC Ry N
15 87 473
=115
SRR Ry
15 8
0" —=]15
Shift Register Right with Carry, SF
SRRC Ry | N
15 87 4'3
C =15
RRR R N
15 87 4°3

.

"y

Rotate Register Right with Carry, SF

RRRC Ry N

15 87 4'3

CC’IS

Rotate Register Left, SF

RRL Ry N
15 8'7 4'3 0

(15

Rotate Register Left with Carry, SF

RRLC Ry N

15 87 4'3 0

C—Cr‘-ﬁ.

DATA MOVEMENT

The data movement instructions are used to transfer data from
memory to a general purpose register, from a general purpose
register to memory, and from register to register.

Load Register, RR

LDR Ry | Ry

15 87 4°'3 0
R1 < (R2)

Load Register Indexed, RX

LRX Ry X

15 8'7 4°3 015

Ry« [A+(X)]

Load Register Immediate, RI

LRI R X

15 87 4'3 0'1s
R1 <A+ (X)

Note: For all Rl and RX formats, if X = 0 then (X) = 0.

Store Register Indexed, RX

STX R X A

15 8'7 4°3 0'15 0
{A+ (X} <Ry

PROGRAM CONTROL

The program control instructions contain a 4-bit condition
code selection field. The condition code selected must be true
for the program control instruction to be executed. Eight of
the condition codes are generated in the ALU and the re-
maining eight reside in the CCU. One of the condition codes,
“1111,” selects a constant logic level ““1’’ condition providing
an unconditional instruction. The condition codes will be
discussed in some detail in the ALU and CCU sections.

JUMP

Jump through Register, SF

JTR cc | Ry,

15 87 4°3 0

CC = True; PC < (Rg)
CC = False; PC < (PC) +1

Jump Indexed, RX

JMPX cc X A

18 8'7 4°'3 015 0

CC = True; PC < [A + (X])]
CC = False; PC < (PC) + 1

Jump Immediate, Rl

JMPI cc X A

15 8'7. 4°'3 015 0

CC = True; PC« A+ (X)
CC = False; PC < (PC) + 1

JUMP-TO-SUBROUTINE

Jump-to-Subroutine through Register, SF

JSR cc | Ry

15 87 4°'3 0

CC = True; Stack < (PC), PC < (R2)
CC = False; PC < (PC) +1

Jump-to-Subroutine Indexed, RX

JsX cc X A

15 87 4°'3 015 0

CC = True; Stack « (PC), PC « [A + (X)]
CC = False; PC « (PC) + 1

Jump-to-Subroutine |mmediate, RI

Write Data from Register, RR

Js| cc X WRITE Ry Ry
15 8'7 4°'3 0°15 15 8'7 43 0
CC = True; Stack « (PC),PC‘-A+ (X) ADDR « (R2)
CC = False; PC < (PC) + 1 DB « (Rﬂ

RETURN
Return-from-Subroutine, SF

Write Data from Memory Indexed, RX

RTN

cc

R2

15

8

7

4

3

0

WRMX

Ry

X

15

8

7

4

CC = True; PC « (Stack)
CC = False; PC < (PC) + 1

INPUT-OUTPUT

There are two types of input-output instructions: Data and
Control. When either type of instruction is executed, an input-
output device address will be loaded into the Memory Address
Register and presented on the eight least significant address
lines. Depending on the instruction type, the device address
will be transferred from a register, come indirectly from a
memory location, or be calculated from an immediate operand.
In any case, the upper 8 bits of the address bus are not defined
within the central processor design, so they may be defined

ADDR <« (R1)
DB < [A +(X)]

Write Data Immediate, RI

WRMI R X

15 8'7 4°3 015

ADDR « (R1)
DB « A + (X)

Write Data from Register Immediate, Rl

and used by the 1/O designer. WRRI R X
4
DATA 15 87 3 0'15
Read Data into Register, RR ADDR <A+ (X)
DB < (R1)
READ Ry R
15 87 4°'3 0 CONTROL
ADDRT « (Rp) Read Status, RR
tt
Ry < (DB) RSTS Ry | Ry
T ADDR is the mnemonic for the address bus.
. . 15 8'7 4'3 0
t1DB is the mnemonic for the data bus.
) ADDR <« (R9p)
Read Data into Memory Indexed, RX R <« (DB)
RDMX Ry X Read Status Immediate, RI
15 8 7 43 015
ADDR « (R1) RDSI Ry X
[A +(X)] < (DB) 15 8'7 4'3 0'15
. . ADDR « A + (X)
Read Data into Memory Immediate, RI Rq <« (DB)
RDMI Rq X A Write Command, RR
15 8'7 473 0'15 0 WCMD Ry R
ADDR « (R1)
15 87 4°3 0
A+ (X)< (D
(X) < (DB) ADDR <« (R9)
Read Data into Register Immediate, R DB « (R1)
Write Command Immediate, Rl
RDRI Ry X A
15 8'7 4'3 0'15 0 wemi Ry X
ADDR « A + (X) 15 8'7 4°'3 0°15
R1 < (DB) ADDR < A+ (X)

Note: For all Rl and RX formats, if X = 0 then (X) =0.

DB « (Rq)

Load Interrupt Service Vector Immediate, R

EXECUTIVE

The executive instructions control the interrupt control unit
and the direct memory access controller. They will cause ad-
dresses to be loaded and functions to be turned on or off. This 15 8'7 4'3 o015 0
set of instructions also provides control information to other

ISVI SR, X A

functional systems in the processor. SR < A +(X)
ALY Clear Interrupt Request, RR
Set Carry, RR
CIR R4 R2
sTC Ri | R 5 87 4'3 0
15 8'7 4°3 0 ICC < (R2) (Clears interrupt request for each level where Ro
CARRY < 1" containsa “1".)
Reset Carry, RR Clear Interrupt Request Indexed, RX
RTC Ry | Ry CIRX Ry X
15 87 4°3 0 15 8 7 4°3 015
CARRY « 0" ICC« [A+(X)]

ICU

Mask Interrupt Register, RR

MIR

Ry

Ra

15 8
MASKR < (Rg)

7

4

3

0

Mask Interrupt Register Indexed, RX

Clear Interrupt Request Immediate, Rl

CIRI

Ry

X

15 8

ICC < A+ (X)

Clear Interrupt Vector, RR

MIX

R1

X

Clv

Ry

Ra

15 8

7

4

MASKR < [A + (X)]

Mask Interrupt Register Immediate, R|

M Rq X RSR R, R,
1 7 4'3
5 8 0715 15 8'7 4'3 o0
MASKR « A + (X
A+ R1 < (S)
Load Interrupt Service Vector, RR
Load Status Register, RR
ISVR SRy Ry
15 87 4'3 o0 LSR Ry Ry
SR < (R2) (The address in Ro becomes the vector for the 15 87 4°3 0
interrupt level specified in SR1.) S+« (Rg)

Load Interrupt Service Vector Indexed, RX

15 8

7

4

3

0

V < 0" (Clears last vector read.)

Read Status Register, RR

Load Status Register Indexed, RX

ISVX SR X
15 8'7 4'3 015 LSRX R1 X
15 8'7 4'3 0'15
SR < [A+(X)]
Note: For all Rl and RX formats, if X = 0 then (X) =0. S«<[A+(X)]

14

Load Status Register Immediate, RI

Load Base Address Register Indexed, RX

LSRI

R4

X

LBAX

Ry

X

15
S<A+(X)

7

4

Enable Interrupt System, RR

EIS

Ry

15
EIFF « 1"

7

4

Disable Interrupt System, RR

DIS

Ry

Ra

15
EIFF « 0"

3

Clear Interrupt Mask, RR

0

cIM

15
M « "0”

Return-from-Interrupt, RR

RFI

Ry

Ry

16

7

4

3

"0

Pop Stack; Enable Interrupts

Load Base Address Register, RR

LBAR

Ry

R2

15
BAR < (Rj)

Note: For all Rl and RX formats, if X = 0 then (X) =0.

7

4

3

0

15

15

8

7

BAR < [A + (X)]

4

Load Base Address Register Immediate, Rl

LBAI

Ry

X

15

BAR « A +(X)

8

7

4

Load Word Count Register, RR

-

LWCH

R2

15
WC « (Rg)

3

0

Load Word Count Register Indexed, RX

pWCX

Ry

X

15

WC‘-[A+ (X)]

§

7

4

Load Word Count Register Immediate, R

LwcCl

Ry

X

15

8

WC « A+ (X)

7

4

CHAPTER V
ARITHMETIC LOGIC UNIT

A block diagram of the arithmetic logic unit is presented in
Figure 3. All of the arithmetic and logic instructions are

executed in the ALU, as well as effective address generation numbers.)
for the RX and RI classes of instructions. The ALU is a 16-bit

parallel subsystem with a high-speed lookahead carry generator.

At the heart of the ALU subsystem is four 4-bit slice Am2901’s,
providing 16 general purpose registers, each of which is 16 bits

or 1" into the shift path.

wide. Also contained in the Am2901 is a parallel combina-

torial logic array (to be discussed below) with the appropriate
generate and propagate signals that are provided to the Am2902
lookahead carry unit. The Am2902 accepts the propagate and
generate signals from each 4-bit slice and provides the carry-in
signal to the next stage and an anticipatory signal to successive
stages. The generate and propagate signals that are output

from the Am2902 provide information that can be decoded to execute a conditional jump.

for compare functions to show the relative magnitude between
the two values. (Compare does not work for 2's complement

To allow for various shift methods, an external set of multi-
plexers is provided to introduce long and short shifts and
rotates and to provide a way to link carry and/or logical ‘0"

The signals generated in the Am2901 showing the status of
the ALU plus the status and condition signals that are derived
in the ALU are stored into a register each time the ALU is
used. A multiplexer is used to select one-of-eight test condi-
tions for presentation to the computer control unit for the
purpose of providing information on which a decision is made

3

DATA BUS
12:1 DB12:15 DB8:11 DB8: 11 DB4:7 DB4:7 : :
S23 saLyr — D812 18 88 B oso:3| |oso:3
2 2 Sgq
4 As 2 A4 s A 2 A4
A, 1B OE* Y D Y D Y D Y D A, 18 Lo
RQO ——{ 1C0 1% RAM3 RAMg RAM; RAMg RAM3 RAMg RAM3 RAMg * 1% ico
« o« @ o« LRO
RRO 1c1 Imo < S S S I 1c1 fp——
@ @ a a RRO CARRY
CARRY 1c2 L0 RAg3 8 & o] 8 c 1C2
A S A A 9 A e A A O <] g
0" ——1c3 = & & 5 RQO 5 1c3
Ros | 2 % % % % i : 1c0 f—L90
2C0 = <4 =4 Q = C
m.l 8 2 9 o £ q 3 £ 9 CIE w 5 o
2C1 ~—]OvR 3 B B <] B 8 3 8 B 5 R (4]
15 T P b g Vee CARRY
2c2 -—Ff3 £ £ £ £ ic2
cout o
C c C c c 0
RRO 2c3 i ! ! 1l ! 1c3
2A, 28 F=0 e) F=0 G P F=0 G P Fo 6 e) 24,28
2 Q [<] [o 9 < T 2,545
cLB
—J ZERO
A>B cus
63 P33 Cayg Gy P Chsy Gy P1 Chux Go Po A FC
¢ ¢ L], 14 72
A<B . Am2902 LOOK-AHEAD CARRY N 1Y mux
P of—ros
CARRY A
% o 0%
Fis Dy Q 0y 0" ——Dy & ¢ J a /
« x
OVR Dy § Q, 0 § . 0, %
« &
ZERO D3 5 Q3 0 8 e RO 0y £ 3
&b = CARRY
cus ba 235 % Pa 3 rro —— 0, 2 ffo—« Q 4
g
Q
cLe %s z" % b 2 cout —— 0
A>B Dg 3 Qg Dg s 2
A<B 0, Q, 0,
s '
sLeT [[———
3
sce g)

Figure 3. Arithmetic Logic Unit Block Diagram.

16

Additionally, logic is provided to present the proper signal to
the carry flip-flop for storage during the next clock cycle. The
output of the carry flip-flop is gated with a signal Force Carry-
In which is controlled from microcode.

THE Am2901

A detailed block diagram of the bipolar microprogrammable
microprocessor structure is shown in Figure 4. The circuit is a
four-bit slice cascadable to any number of bits. Therefore, all
data paths within the circuit are four bits wide. The two key
elements in the Figure 4 block diagram are the 16-word by
4-bit, 2-port RAM and the high-speed ALU.

Data in any of the 16 words of the Random Access Memory
(RAM) can be read from the A-port of the RAM as controlled
by the four-bit A address field input. Likewise, data in any
of the 16 words of the RAM as defined by the B address field
input can be simultaneously read from the B-port of the RAM.
The same code can be applied to the A select field and B select
field; in which case, the identical file data will appear at both
the RAM A-port and B-port outputs simultaneously.

When enabled by the RAM write enable (RAM EN), new data
is always written into the file (word) defined by the B address
field of the RAM. The RAM data input field is driven by a
three-input multiplexer. The configuration is used to shift the
ALU output data (F), if desired. _

The RAM A-port data outputs and RAM B-port data outputs
drive separate four-bit latches. These latches hold the RAM
data while the clock input is LOW. This eliminates any possible
race conditions that could occur while new data is being
written into the RAM.

The high-speed Arithmetic Logic Unit (ALU) can perform
three binary arithmetic and five logic operations on the two
4-bit input words R ad S. The R input field is driven from
a 2-input multiplexer, while the S input field is driven from
a 3-input multiplexer. Both multiplexers also have an inhibit
capability; that is, no data is passed. This is equivalent to a
“‘zero"’ source operand.

Referring to Figure 4, the ALU R input multiplexer has the
RAM A-port and the direct data inputs (D) connected as
inputs. Likewise, the ALU S input multiplexer has the RAM
A-port, the RAM B-port and the Q register connected as
inputs.

This multiplexer scheme gives the capability of selecting
various parts of the A, B, D, Q and “0" inputs as source
operands to the ALU. These five inputs, when taken two at
a time, result in ten possible combinations of source operand
pairs. These combinations -include AB, AD, AQ, A0, BD, BQ,
BO, DQ, DO and QO. It is apparent that AD, AQ and AO are
somewhat redundant with BD, BQ AND BO in that if the A
address and B address are the same, the identical function
results. Thus, there are only seven completely non-redundant
source operand pairs for the ALU. The Am2901 micropro-
cessor implements eight of these pairs. The microinstruction
inputs used to select the ALU source operands are the lg, I
and |2 inputs. The definitions of lg, 17 and |2 for the eight
source-operand combinations are as shown in Figure 5. Also
shown is the octal code for each selection.

The two source operands not fully described as yet are the D
input and Q input. The D input is the four-bit wide direct data
field input. This port is used to insert all data into the working
registers inside the device. Likewise, this input can be used in
the ALU to modify any of the internal data files. The Q
register is a separate four-bit file intended primarily for multi-
plication and division routines, but it can also be used as an
accumulator or holding register for some applications.

The ALU itself is a high-speed arithmetic/logic operator
capable of performing three binary arithmetic and five logic
functions. The 13, I4, and |5 microinstruction inputs are used
to select the ALU function. The definition of these inputs is
shown in Figure 6. The octal code is also shown for reference.
The normal technique for cascading the ALU of several devices
is in a lookahead carry mode. Carry generate, G, and carry
propagate, P, are outputs of the device for use with a carry
lookahead generator such as the Am2902. A carry-out, Cp+4,
is also generated and is available as an output for use as the
carry flag in a status register. Both carry-in (Cp) and carry-out
(Cnh+4) are active HIGH.

The ALU has three other status-oriented outputs. These are
F3, F = 0, and overflow (OVR). The F3 output is the most
significant (sign) bit of the ALU and can be used to determine
positive or negative results without enabling the three-state
data outputs. F3 is non-inverted with respect to the sign bit
output, Y3. The F = 0 output is used for zero detect. It is an
open-collector output and can be wire OR’'d between micro-
processor slices. F = 0 is HIGH when all F outputs are LOW.
The overflow output (OVR) is used to flag arithmetic opera-
tions that exceed the available two’s complement number
range. The overflow output (OVR) is HIGH when overflow
exists, that is, when Cp4+3 and Cp+4 are not the same polarity.

The ALU data output is routed to several destinations. It can
be a data output of the device and it can also be stored in the
RAM or the Q register. Eight possible combinations of ALU
destination functions are available as defined by the lg, 17, and
Ig microinstruction inputs. These combinations are shown in
Figure 7.

The four-bit data output field (Y) features three-state outputs
and can be directly bus organized. An output control (OE) is
used to enable the three-state outputs. When OE is HIGH, the
Y outputs are in the high-impedance state.

A two-input multiplexer is also used at the data output such
that either the A-port of the RAM or the ALU outputs (F)
are selected at the device Y outputs. This selection is controlled
by the lg, 17, and Ig microinstruction inputs. Refer to Figure
4 for the selected output for each microinstruction code
combination.

As was discussed previously, the RAM inputs are driven from
a three-input multiplexer. This allows the ALU outputs to be
entered non-shifted, shifted up one position (X2) or shifted
down one position (= 2). The shifter has two ports; one is
labeled RAMQ and the other is labeled RAM3. Both of these
ports consist of a buffer-driver with a three-state output and
an input to the multiplexer. Thus, in the shift-up mode, the
RO buffer is enabled and the Rl multiplexer input is enabled.
Likewise, in the shift down mode, the LO buffer and LI input
are enabled. In the no-shift mode, both the LO and RO buffers
are in the high-impedance state, and the multiplexer inputs are
not selected. This shifter is controlled from the Ig, 17, and Ig
microinstruction inputs as defined in Figure 7. Similarly, the

a0 Do 0y 02 03 } <o Qg — P | !
Aoomess ~ 16.81T BY 4.81T 2P0RT RAM o AoonEss — \—y _
| e oo [i BElzE I an ke
o IS we o 5 8 8 8 [T l T T v

ALy

ﬂ [0, 02 03

Quock v AT

& € AULATCH)| g BLATCH cr QREGISTER a
Ag Ay Ay Ay 8 8; 8, By

DESTINATION
_DECODE

<
b—< 17
—<'s

[
DIRECT — 02
DATA
INeuTS | Oy
00 _
] 1_ [

n
2N 2N 2N 2N 3N 3N 3N 3N 1,
B :E 2=E 2 BBl T
- SOURCE

—<
I 1 1 1 “ecooe.
<1,
] I 1 I]
_uVIl
. AL '\ Ry Ry Ry Ry So S S2 S3 <&
>— i | = _ —
1 ARITHMETIC LOGIC UNIT (ALU) Coea
< fo] Fa [—<ove

]
1

| ‘IA
Fe0
(orc) fa

Note: LSB is numbered ‘O

"*; MSB is numbered ‘3",

Figure 4. Detailed Am2901 Microprocessor Block Diagram.

18

ALU SOURCE
MICRO CODE OPERANDS
Octal
2 h o Code R S
L L L 0 A Q
L L H 1 A B
L H L 2 o Q
L H H 3 (¢} B
H L L 4 o A
H L H 5 D A
H H L 6 D Q
H H H 7 D o

Figure 5. ALU Source Operand Control.

Q register is driven from a three-input multiplexer. In the
no-shift mode, the multiplexer enters the ALU data into the
Q register. In either the shift-up or shift-down mode, the
multiplexer selects the Q register data appropriately shifted
up or down. The Q shifter also has two ports; one is labeled
Qg and the other is Q3. The operation of these two ports is
similar to the RAM shifter and is also controlled from lg, 17,
and Ig as shown in Figure 7.

The clock input to the Am2901 controls the RAM, the Q
register, and the A and B data latches. When enabled, data
is clocked into the Q register on the LOW-to-HIGH transition
of the clock. When the clock input is HIGH, the A and B
latches are open and will pass whatever data is present at the
RAM outputs. When the clock input is LOW, the latches are
closed and will retain the last data entered. If the RAM-EN is
enabled, new data will be written into the RAM file (word)
defined by the B address field when the clock input is LOW.

There are eight source operand pairs available to the ALU as
selected by the lg, 11, and 12 instruction inputs. The ALU can
perform eight functions, five logic and three arithmetic. The

MICRO CODE ALU 13, 14, and.l5 instruction inputs control the function selef:tion.
pwen Function Symbol The carry input, Cp, also affects the ALU results when in the
Is lg I3 cx arithmetic mode. The Cp, input has no affect in the logic mode.
When I through Ig and Cy, are viewed together, the matrix of
Lo oL 0 |RPlsS R+S$ Figure 8 results. This matrix fully defines the ALU/source
L L H 1 S Minus R S—R d f . f ch
Loon L 2 R Minus § R_s operand function for each state.
L H H 3 RORS RVS
H L L 4 RAND S RA 'S The ALU function can also be examined on a ‘“‘task’’ basis;
oo 2 2:;‘%: s 23: i.e., add, subtract, AND, OR, etc. In the arithmetic mode, the
H H H 7 R EX-NOR § Aavs carry will affect the function performed while in the logic
mode, the carry will have no bearing on the ALU output.
Figure 9 defines the various logic operations that the Am2901
can perform, and Figure 10 shows the arithmetic functions of
the device. Both carry-in LOW (Cj, = 0) and carry-in HIGH
Figure 6. ALU Function Control. (Cpy = 1) are defined in these operations.
RAM Q-REG. RAM Q
MICRO CODE FUNCTION FUNCTION v SHIFTER | SHIFTER
Octal . . OUTPUT
Ig Iy lg Code Shift Load Shift Load RAMg | RAM3 Qg Q3
L L L 0 X NONE NONE F>Q F X X X X
L L H 1 x NONE X NONE F X X X X
L H L 2 NONE F>B X NONE A X X X x
L H H 3 NONE F>B X NONE F X X X X
H L L 4 DOWN F/2->8 DOWN a/2-Q F Fo | INg | Qg | INg
H L H 5 DOWN Fi2>8 X NONE F Fo INg | Qg X
H H L 6 upP 2F > B up 20-Q F INg | Fg INg | Q3
H H H 7 upP 2F > B X NONE F INg | F3 X Q3
X=Don’'t care. Electrically, the shift pin is a TTL input internally connected to a three-state output which is in the high-
impedance state.
B = Register Addressed by B inputs.
Up is toward MSB, Down is toward LSB.

Figure 7. ALU Destination Control.

19

o 1210 OCTAL 0 1 2 3 4 5 6 7
$l5 IS\LU
Adl X a0 A8 0,0 0.8 0.A D.A D,Q D,0
L3 .
Function
Cn=L A+Q A+B Q B8 A D+A D+Q 3}
0| RPlusS
Ch=H A+Q+1 A+B+1 Q+1 B+1 A+ D+A+1 D+Q+ D+1
Ch=L Q-A-1 B-A-1 Q-1 B-—1 A-1 A-D-1 Q-D-1 -D-1
1 | S Minus R
Cp=H a-A B—A Q B A A-D Q-D -0
Cn=L A-Q-1 A-B-1 —Q-1 —B8-1 —A-1 D-A-1 D-Q-1 D-1
2 | RMinus S
Cph=H A-Q A-B -Q -B -A D-A bD-Q D
3 RORS Ava AVB Q B A DVA pva D
4| RANDS AAQ AAB 0 0 0 DAA pAQ 0
5| RANDS AAQ AAB Q B A DA bra 0
6 |[REX-ORS AvQ AV B Q 8 A D¥A ova [b)
7 REX-NORSI Ava AV B o} B A DV A Dva [}
+ = Plus;, — = Minus; V=0R; A =AND; ¥ = EX-OR

Figure 8. Source Operand and ALU Function Matrix.

DETAILED LOGIC

Data is input to the ALU from: the data bus via the direct
inputs, D. The instruction field lg-g will determine whether
the destination of the data is one of the 16 general purpose
registers selected by the register field Rp, the temporary
register Q, or whether no storage action is to be taken. The
remainder of the instruction field, 1g-5, will determine which
two data sources will be selected for operation by the combi-
natorial arithmetic and logic array and the function to be
performed by the array.

Data is output from the ALU through the Y outputs. The Y
outputs have a high-impedance, three-state condition that is
controlled by the signal OE*; the signal SALU* which enables
OE* comes from the CCU and will be discussed with the bus
control concepts. The source of the output data and any
operations that are performed on it are controlled by Ra, Rp,
and lp-8.

During any operation in the Am2901, the data or operational
status signals are monitored. The signals OVR, overflow, and
F15, the sign bit, are important status bits for arithmetic
operations and tests. There is a function equal to zero detector
in the Am2901 with an open-collector output. The two zero
detectors from the least significant byte (Figure 11) FO1 and
FO2, are tied together with a pull-up resistor and form the
signal CLB, compare lower byte. Similarly, the two zero
detectors from the upper byte, FO3 and FO4, are tied together
to form CUB, compare upper byte. In turn, CLB and CUB are
AND’d together to form the signal ZERO; the result of the
previous operation was a logical or arithmetic ‘0" for the
entire word.

The generate and propagate signals, G* and P*, originating
from the most significant end of the Am2902 lookahead carry

20

generator are used to provide arithmetic comparisons between
two words. If the arithmetic function A-B is performed in the
Am?2901, the signal G* may be inverted to derive the condition
A>B; if the result G equals “1,” then A is greater than B. By
taking the logic AND of P* and’G*, the signal A<B may be
derived; this signal is also positive true. If A is arithmetically
equivalent to B, the signal ZERO will be true.

(These tests are for magnitude only comparisons. To compare
signed, two's complement numbers, the logic would be mod-
ified to use F15 and ZERO.)

The seven basic or derived signals, F15, OVR, ZERO, CUB,
CLB, A>B, and A<B are presented to an eight-bit register,
Am25LS273 or equivalent (Figure 11). This register is loaded
everytime the ALU is selected for an operation by the CCU;
the ALU clock, CP1, is generated in the CCU. At the time the
computer is turned on or a master reset operation is manually
performed, the signal TOCLR™, turn-on clear, is generated to
initialize the selected storage devices in the system to an
appropriate known state. This initialization places the control
unit in a known state, as well as the various signals upon which
CCU decisions are made.

The output of the condition code register is presented to an
eight-input multiplexer (Figure 11), an Am25LS251, with
three-state outputs. In addition to the seven signals from the
condition code register, the condition of the carry flip-flop,
CARRY, is also provided to the multiplexer. The microcontrol
signals C3_-g are used to select an ALU condition code for
conditional branching in microcode or machine code.

The carry generator and flip-flop logic are shown in Figure 12.
The input to the carry flip-flop is selected from one-of-six
sources by an Am25LS151 multiplexer. The flip-flop may be

Octal G
Foncti
|“3' 1210 roup unction

40 AAQ
41 ANAB
45 AND DAA
46 pAQ
30 AvQ
31 AVB
35 OR DVA
36 ova
60 AvQ
61 AvS8

EX-OR
65 DvA
66 ova
70 Ava
71 AVE
75 EX-NOR BvA
76 bva
72 Q
73 8
74 INVERT a
77 b
62 Q
63 B

P
64 ASS A
67 D
32 Q
33 B
3 PASS A
37 D
42 0
43 0

“2ERO"
P ERO o
a7 0
50 AAQ
51 MASK AAB
656 DAA
56 bAQ

Figure 9. ALU Logic Mode Functions (Cy, Irrelevant).

Octal Cn =0 (Low) Cn = 1 (High)
I543. 1210 Group Function Group Function
oo A+Q A+Q+1
01 ADD A+B ADD plus A+B+1
0s D+A one D+A+1
06 o+Q D+Q+1
02 Q Qa+1
03 PASS B Increment | B+1
04 A A+l
07 D D+1

12 Q-1 Q
13 Decrement B-1 PASS B
14 A-1 A
27 D-1 D
22 -Q-1 -Q
23 1's Comp. -B-1 2'sComp. | -B
24 —-A—1 (Negate) -A
17 -D-1 -D
10 a-A-1 Q-A
11 Subtract B-A-1 Subtract B-A
15 (1’s Comp) | A-D-1 (2's Comp) | A-D
16 Q-D-1 Q-D
20 A-Q-1 A-Q
21 A-B-1 A-B
25 D-A-1 D-A
26 D-Q-1 D-Q

Figure 10. ALU Arithmetic Mode Functions.

21

set to “1” or cleared to "0’ by selecting either V¢ or ground.
For arithmetic operations, the source of data for the carry
flip-flop will be the carry-out signal, COUT, from the most
significant Am2901. For a shifting operation, the most signi-
ficant bit from the RAM-Register, LRO, may be selected. If
no change in the carry status is desired in the carry signal itself,
CARRY may be selected. Carry signal selection is accomplished
through the microcode signals Cg-2. The ALU clock, CP1, is
used to clock-in the new carry data. For some ALU functions,
it is desirable to force the carry-in signal to “1" to ““0.” The
microcode signals FCO and FC1 accomplish this function. The
signal CIN is the carry-in signal that is presented to the Am2902
lookahead carry generator and the least significant Am2901.

The detailed logic for the shift linkages is shown in Figure 13.
The most and least significant RAM shifter bits are LRO and
RRO. And the most and least significant Q-Register bits are
LQO and RQO.

The potential logic shift linkages are shown diagrammatically
in Figure 14, while the rotate shift linkages are shown in
Figure 15. Because there are a large number of instruction/
signal combinations to keep track of, the information has been
tabulated in Figure 16. By diagramming the data flow through
the registers for each instruction, a table may be compiled by
instruction type showing the input port and the signal name.
It can be seen from the Am2901 destination control signals
1678 that whenever there is a shift right that 17 is at logic zero.
The RAM and Q-LSB multiplexers may therefore be enabled
by 17" and the RAM and Q-MSB multiplexers may be enabled
by 17. Because the only instances when the Q-MSB multiplexer
is needed is for long right shifts or rotates, the select signals
may be constant as shown. The remaining select bits, Sg to Ss,
control the remainder of the shift linkage. Further, since
the MSB and LSB multiplexers are not used simultaneously,
Sp. and Sq may be common to Sy and S3, or S and S3 may
be common to S4 and Sg,.

MICROPROGRAM CONTROL OF THE ALU

A summary of the ALU microinstruction control signals is
presented in worksheet form in Figure 17. A work sheet of
this type will prove very helpful during the design and test of
the ALU as a subsystem. Also, the worksheet provides a simple
mechanism for algorithm development on a subsystem level.
Space is provided for line number and the instruction descrip-
tion, and a column is provided for each control signal that is
not derived in the ALU but rather is sourced from the CCU or
another control source.

The signal TOCLR™ is generated automatically when power
is turned on in the computer, or manually when a master reset
is generated from the control panel. This signal is used to
initialize the entire system from a known starting point; all
SSI and MSI storage elements are directly cleared or preset by
this signal.

CP1 is the Am2901 clock. This signal is generated in the com-
puter control unit whenever the ALU instructions are being
executed. All storage elements operate on the LOW-to-HIGH
transition of CP1. Whenever data is to originate in the ALU
and be transferred elsewhere, the signal SALU* is true and
causes the data selected in the ALU to be impressed on the
data bus (Figure 3).

The RAM selection fields A and B may originate from the
Instruction Register or from the microinstruction field. There-
fore, for most instructions the hardware designer does not
have to concern himself with the actual contents of the signals
RAQ-3 and RBQ-3, but rather the fact that they are used. The

s
kg ok CARRY o
1 (SEE FIGURE 12) s
4 1 Dy
FO‘—l 741508 20 0,
Fo3 3 D TC
. % . Y —®
FO2 -
FO1 e} b}
g sa 04 &
5 s
G* < 6Q Dg < w o TC*
70 Dg
8Q Dy
CLK C B A
pe
741508 Gooih
s ,]

Figure 11. Detailed Logic Diagram Condition Code Generator, Register and Multiplexer.

Vee
8 A
V,
CARRY —— cc
-[———-{ = 1D 1Q ARRY l 20
L Rao — q PR 2
T p— & -~ g
€ 2 2 CIN
< (PART OF AM25LS273 &
NC wio IN FIGURE 11) >° w2 g
RRO —— 2c3
cour —— r A B 26
1
cp1 =
FC1

Figure 12. Detailed Logic Diagram Carry Generator and Flip-Flop.

17 17*
S2 So
®] I
18 1A 1G 16 1A 18
RQO 1co 1c0 p——— 100
1c1 1¢1 f— LRO
RAM RAM .
Am25LS253 1Y +— 1Y Am25LS263
1c2 mse Ls8 1C2 |———— CARRY
1c3 1c3 <
LRO RRO)
L I (4) Am2901's
2 2A Lao RQO
2c0 1c0 f—— La0
2¢1 Q o 1¢1 f———— LRO
Am25LS253 2Y : . 1Y Am25LS253
262 MsB Ls8 c2 CARRY

RRO | 2c3 103 ——_L -
26 16 1A 1B o

Figure 13. Detailed Logic Diagram Shift Linkages.
22

nr g [CRO _RRO]
Logical Left Logical Right
LRO RRO [LRO____RRO]
o
5 Qo0 g Logical Right w/Carry
Long Logical Left
"o LRO RRO
LRO RRO J=- 0"
LQ0 RQO,
. ‘Long Logical Right
Logical Left w/Carry o
LRO RRO LRO RRO
LQ0 RQO J=-"0" LQo RAO
Long Logical Left w/Carry Long Logical Right w/Carry

LRO RRO LRO RRO

Rotate Left Rotate Right

RO RRO. LRO RRO

Rotate Left w/Carry Rotate Right w/Carry

LQO RAO

Rotate Long Right

Rotate Long Left w/Carry

Rotate Long Right w/Carry

Figure 14. Logical Shift Linkage$.

Figure 15. Rotate Shift Linkages.

SHIFT LINKAGEEONTROLS

INSTRUCTION lg7g | SHIFT MUX. OUTPUT "aimise [RAMMSB | Q.LsB
. LRO [RRO| LQO | RQO| SO | S1 | S2 | s3 |s4 | s

shift Right Short W/O Carry 101 | “0” z RRO | 2z X X 1 1 X X
Shift Right Short W/ Carry 101 c b4 RRO | 2z X X 0 1 X X
Shift Right Long W/O Carry 001 | o~ z RRO | 2z X X 1 1 X X
Shift Right Lohg W/ Garry 001 c b4 RRO | 2z X X 0 1 X X
Shift Left Short W/O Carry 1 z "o 2 X 1 1 X X X X
Shift Left Short W/ Carry 1 z “Q" z X 1 1 x | x | x| x
Shift Left Long W/O Carry 011 ¥4 LQO 4 ‘0" 0 0 X X 1 1

shift Left Long W/ Carry o1 z Lao z Q" 0 0 X X 1 1
Rotate Right Short W/O Carry 101 RRO z RRO z X X 1 0 X X
Rotate Right Short W/ Carry 101 C z RRO z X X 0 1 X X
Rotate Right Long W/O Carry 001 RQO z RRO z X X 0 0 X X
Rotate Right Long W/ Carry 001 Cc z RRO 4 X X 0 1 X X
Rotate Left Short W/O Carry 111 ¥4 LRO b4 X 1 0 X X X X
Rotate Left Short W/ Carry 11 4 C z X V] 1 X X X X
Rotate Left Long W/O Carry on z X z LRO| © 0 X | x 1 0
Rbtate Left Long W/ Carry 011 4 X z C 0 0 X X 0 1

Z = HIGH Impedance State 7 C ¢ . o .)

X = Don’t Gare

Figure 16. Shift Linkage Instruction, Muitiplexer and Control Functions.

23

‘ON 3NIT

3Q000HIINW

m » RAM SELECTION Am2901 INSTRUCTION CARRY COND. SHIFT LINKAGE
>
ALU INSTRUCTION m m m FIELDS A&B CONTROL CONTROL SELECT CONTROL
2 * P [d[2[2 (322 sl=lslal=slaisisisiololalnlnlo oo »[»
* WWWWWW&%OLZS.VSQLBOLZWWSWQQ%SZSW%

-

N

1

12

14

16

Figure 17. ALU Microinstruction Control Fields.

24

*sa|dwexy |043u0) uonaniisuj oINW NV ‘gL 2anbiy

X| x| X| X| x| X| X|X|[x|x]ojo]jo]JofoOo|JO|O|L|X|X]X|X|X]|X [N Auedies | g
X| x| x| x| xp x| x| x|x{x|x|{x|ojojt|]ojo[L|lo|L]|L{O]L]O ojo|t (D) sausiBay 203§ | ¢
XX X| X[X|x|x|x|x|x|x|x|o]jJo|[t]ojo[t|]Oo]|L|L]O] L|L ojo|1t (Y) JaisiBay 21015 vl
X| XX x| X| x| x| x|x|[x|x{x|o]jo|iv|{o|tv]|]tev]lO|b|LftL] L]l LI vt XY ‘1a¥s160y peo €1
x| x| x| x| x| x| x| x| x| x| x| x{o{fo[t|]o|¢e|L|]oO|¢r|[L|]L]O]O Ll vt HyY “sasibey peo | 7,
X| X| X| X] o] v X| X[X|X|X|X|OjO| L v|bL]bL]jber]oOojL|Lr]joOf b|l [I I (dN) 1387 1815168y areioy 1L
X| X| X| X| V| V| X[X|X|X|O0]OjL|OjO|L|L|LIOjL}L[O . [Ll 4|t AsieD yum {dn) 17 saisibay 11us oL
X|X|X| X[v]v] X X|X|X|X|X]OojO}L|L]L|L]OjLjLloOfL]t [O (dn) 1387 Jaisibay 141ysS 6
X[x| x| X[x| x| X| X| X{X| x| x[{o]jo[ft{jo|JO|t{L[fL]LlO]O]L [sia1s16ay asedwo) |ed1607 8
X| XX X X| X|X] X|X|X[X]X|X]|X|X|]O]L|]L]L]LlO}jOjO)1L Lyt sJalsibay HO-anISNOX3 ’
X| X1 x| x|{x|x|]ojo|]t|]ojlojo|jt]t}jtrtiojL|L|jojoOjOjoO] L]t [A I 1315168y 1UBWBIdU| 9
X| XXX X| X{X]| X| X|X|X|X|X|X|X]O}btfbLjL]b)ir]jof bl [A 1815163y 1uaWa|dWOo) S,0M | 5
X| x| x| x[x|]x]oloftL|ojojfojojoOoftLtL|jOjO]L|OjL|O|lO|OL L vt suaisibay asedwo)d u:oEL«._._(v
x| x| x| x| x| x{fojojt]jo]lojt|s|tLt]tL]joft]L[o]jo]O]OjOf]! [O Auied yum siaisibay ppy €
X| X| X{ x| x|{xlojlo|jt{foftftitit{ftLfojojojo0fojof Ltfofj!l [A Aroway o1 Jaisibay ppy z
X| X[X Xfxf{xjo]jof¢ejoft]tftyeleifoftLt|ltLiojofofOfOf9'! [} siaisibay ppy L
%mn&mmmwmmmmmmmmnmmmmmnmmmmmmmmm. b ma
T0HLNOD 1037138 TOHLNOD TOHLNOD 8% Vvsalad M m w NOHLINYLSNI NIV m m
FOVINIT L4IHS "aNod N-1-) 40 NOILONYLSNI LO6ZWY NOILD313S WYY @ = m 3

25

carry control, condition select, and shift linkage control fields
were all discussed in detail above.

Sixteen of the instructions described in Section 5 that affect
the ALU are presented here (Figure 18) in microcode form.
It is important to remember that the microcode presented in
this table is not complete in itself; it is merely that portion of
the code that controls the execution of the ALU.

All of these instructions are relatively straight-forward in that
they only require a single machine cycle except for Add
Register to Memory, Line 2. Because one of the operands is
coming from memory and the other operand is coming from a
general purpose register, the sum of the two operands must be

temporarily stored in the Q Register. On the next cycle, then,
a Store Q-Register, Line 15, must be executed to return the
sum to the addressed memory ldcation.

Note also the difference between the RR and RX Load Register
instructions of Lines 12 and 13, and the fact that the ALU
does not receive a clock pulse, CP1, during the execution of
the Store Registér instructions of Lines 14 and 15.

If the reader does not have experience in the design of micro-
controlled processors, it will be useful to rewrite the micro-
instructions for some of the ALU instructions that were
presented in Figure 18. Figure 17 will provide a good work-
sheet.

26

CHAPTER VI
PROGRAM CONTROL UNIT

The program control unit is built into the computer to main-
tain the address of the next instruction to be executed, the
next instruction operand to be fetched, or to control program
modification. Program modification consists of controlling
jumps, jumps-to-subroutines, and returns-from-subroutine; a
process also called program linkage.

The address of the next instruction to be executed is main-
tained in the Program Counter (or Program Counter Register).
The CCU fetches the first word of the instruction and loads it
into the Instruction Register which resides in the CCU. At the
same time that the instruction load occurs, the PC register is
incremented, thereby pointing to the next instruction or the
second word of the current instruction. If the address(es) of
the instruction operand(s) have to be calculated, the calcula-
tion will be performed in the ALU. The calculated address is
called an Effective Address, EA, and will be loaded into the
MAR for the operand fetch.

A block diagram of this basic PCU is shown in Figure 19 in the
form it might take with an MSI implementation. Notice that
all address information is introduced into the PCU from the
data bus. The PC register is resident in the subroutine stack

O\ {
A
INCREMENTER
F
16
’ R
A B
SSEL——{ 1:2MULTIPLEXER
x F
8
I RDWRT—‘
R/W DI
o
=
@ a
r4
3 =82 4 16:LEVEL
< 328 “e]A SUBROUTINE
< =™ STACK
[=] o L()
=)
%
LATCH

PUSH ——]
POP —=

PLSDE*

>

D

LOMAR MEMORY ADDRESS
REGISTER
MAROE* —e0Of

ADDRESS BUS

Y

| .
NV v

Figure 19. MSI Program Control Unit Block Diagram.

27

which is 16 levels deep. The RAM used for the subroutine
stack is controlled by a four-bit up-down counter used as the
stack pointer. When the primary power is turned on, the stack
pointer is cleared to zero and the zero-th word in the stack
becomes the PC register. The output of the RAM is connected
to the input of a latch which in turn is connected to a full
adder used as an incrementer. The output of the incrementer
and the data bus is presented to a 2-input multiplexer, the
output of which is connected to the data input of the RAM.
(Although not shown specifically in the diagram, the latch is
necessary to avoid a race condition.)

If a Jump instruction is executed, the stack input multiplexer
selects the data bus as the address source and the address is
loaded into the PC register. If a Jump-to-Subroutine instruc-
tion is executed, the PC register is incremented at the same
clock pulse (this is the return address) and stack pointer is
incremented (or PUSHed) and the address of the first instruc-
tion of the subroutine is loaded into the new RAM word which
is now the PC register for this subroutine level. When a Return-
from-Subroutine instruction is encountered, the stack pointer
is decremented (or POPed) and the program execution will
continue with the instruction after the Jump-to-Subroutine.

Up to 15 levels of subroutine may be implemented with this
hardware implementation. The MSI PCU described above takes
oximately thirty 16-pin packages.

Figure 20 provides an LS| implementation of the PCU described
above in four 20-pin and one 16-pin package. (The one dif-
ference between the two systems is that the LS| version is only
capable of four levels of subroutine.) The LSI PCU is imple-
mented with four Am2911’s and a microcontrol PROM. The
Am2911 is a four-bit slice microsequencer which is derived
from the 28-pin Am2909.

THE Am2909 AND Am2911

The Am2909 is a bipolar microprogram sequencer intended
for use in high-speed microprocessor applications. The device
is a cascadable four-bit slice such that two devices allow
addressing of up to 256 words of microprogram and three
devices allow addressing of up to 4K words of microprogram.
A detailed logic diagram is shown in Figure 21.

The device contains a four-input multiplexer that is used to
select either the address register, direct inputs, microprogram
counter, or file as the source of the next microinstruction
address. This multiplexer is controlled by the Sgand Sq inputs.

The address register consists of four-D-type, edge-triggered
flip-flops with a common clock enable. When the address
register enable is LOW, new data is entered into the register
on the clock LOW-to-HIGH transition. The address register is
available at the multiplexer as a source for the next micro-
instruction address. The direct input is a four-bit field of
inputs to the multiplexer and can be selected as the next
microinstruction address. This allows an N-way branch where
N is any word in the microcode.

< DATA BUS >
(3 3 } 6 ? 6 } 6
))))
cp2 K K cx ek
Am2911 Am2911 Am2911 Am2911
Cin
r——————"1% Cn+a Cn Cn+a Cn Cned Ch Cnea
0E v 0E Y OE ¥ 0E v
. 2 3}] "
OE ADDRO:3 ADDR4:7 ADDRS: 11 ADDR12:15
|~
[ADDRESS BUS
8
e =00
PUP 0,
4
S)05 zxs
(S)~—os MM
05
N 0g
o

Figure 20. LSI Program Control Unit Block Diagram.

The Am2909 contains a microprogram counter (uPC) that is
composed of a four-bit incrementer followed by a four-bit
register. The incrementer has carry-in (Cp) and carry-out
(Cn+4) such that cascading to larger word lengths is straight-
forward. The uPC can be used in either of two ways. When the
least significant carry-in to the incrementer is HIGH, the
microprogram register is loaded on the next clock cycle with
the current Y output word plus one (Y+1 —> uPC). Thus,
sequential microinstructions can be executed. If this least
significant Cp, is LOW, the incrementer passes the Y output
word unmodified and the microprogram register is loaded
with the same Y word on the next clock cycle (Y => uPC).
Thus, the same microinstruction can be executed any number
of times by using the least significant C, as the control.

The last source available at the multiplexer input is the 4 x 4
file (stack). The file is used to prc'wide return address linkage
when executing microsubroutines. The file contains a built-in
stack pointer (SP) which always points to the last file word
written. This allows stack reference operation (looping) to be
performed without a push or pop.

The stack pointer operates as an up/down counter with sepa-
rate push/pop and file enable inputs. When the file enable
input is LOW and the push/pop input is HIGH, the PUSH
operation is enabled. This causes the stack pointer to incre-
ment and the file to be written with the required return
linkage. — the next microinstruction address following the
subroutine jump which initiated the PUSH.

If the file enable input is LOW and the push/pop control is
LOW, a POP operation occurs. This implies the usage of the
return linkage during this cycle and thus a return-from sub-
routine. The next LOW-to-HIGH clock transition causes the

28

stack pointer to decrement. If the file enable is HIGH, no
action is taken by the stack pointer regardless of any other
input.

The stack pointer linkage is such that any combination of
pushes, pops or stack references can be achieved. One-micro-
instruction subroutine can be performed. Since the stack is
four words deep, up to four microsubroutines can be nested.

The ZERO input is used to force the four outputs to the
binary zero state. When the ZERO input is LOW, all Y outputs
are LOW regardless of any other inputs (except OE). Each Y
output bit also has a separate OR input such that a conditional
logic one can be forced at each Y output. This allows jumping
to different microinstructions on programmed conditions.

The Am2909 features three-state Y outputs. These can be
particularly useful in military designs requiring external
Ground Support Equipment (GSE) to provide automatic
checkout of the microprocessor. The internal control can be
placed in the high impedance state, and preprogrammed
sequences of microinstructions can be executed via external
access to the control ROM/PROM.

The Am2911 microprogram sequencer, Figure 22, is a 20-pin
version of the Am2909. There are two differences between the
Am2911 and the Am2909: (1) the direct and register inputs
are separate on the Am2909 and common on the Am2911,
and (2) there are no OR inputs on the Am2911. Otherwise,
the two parts are identical. Although intended especially for
control of microprogram memory, these devices contain much
of the logic required to control the main memory as well. The
Am2911 is used in the PCU described here.

‘606ZWY ‘weibeiq yooig 19ousnbag wesboidosdy L Z anbi4

‘paacwa. 'YO pue | L6ZWY U0 18y18B0l perdeuuod !g pue !y :e10N

€A Za ‘A 0x

Y T Wu r
B B! ~}~<20
s E O
i m “>
- IEN
_llnr EIY ou3az
vy
% o % € peu
+
ok e [_ : [
% 1o % fo
~“ o - Sadhar 4_.. r T - b=y o
I e 1 o g yo Zyo two %o
| 1 o %
e I Y 05 .
| 1 on [4] JAI_
is
4 -mimne - ‘ - N <<is
| | | o “ a -
+ + + 21907
S NS IR sumavas
| | T %
RN o <o
t
‘o
B J B % 319VN3
¥3151934
o ‘g % %
lwé%a
o, h 318VN3 378VN3 =1
WaOs s <4 AN
o0 -
{
~ HSNd = H
dOd/HSNd 40d=1

29

DETAILED LOGIC AND MICRO CONTROL

Almost all of the logic detail is in the Am2911 itself. The
remainder of the logic in the PCU lies in the control PROM,
an Am29751. There are five address inputs on the PROM: four
instruction inputs and one test condition input. Although the
test condition signal, TC, is separated in the discussion of the
circuit, it is important to understand that TC is in fact a PCU
instruction bit. TC does not originate in the microcode, but
rather from the ALU and CCU test condition multiplexers.
The eight PROM outputs provide all of the control necessary
for the Am2911’s.

As with the ALU, the PCU clock CP2 is gated by the computer
control unit. CP2 is withheld from the PCU for those instruc-
tions that are not to cause address storage or modification.
There are no other external control signals distributed to the
PCU.

The memory address register will be the address or holding
register in the Am2911. The PC register will be the micro-PC
register, and the existing stack will be used as it would be in

MEMORY
ADDRESS
REGISTER

STACK
POINTER

l

4x4FILE

ot

!

So [>—=1
MULTIPLEXER — REé‘IPS(‘:rER
S, D——
ZERO 1
—1{ INCREMENTER f——" > Cn+a
¢

Figure 22. Am2911 Microsequencer Block Diagram.

30

a microsequencer. The data inputs will be connected to the
data bus and the three-state outputs, Y, will be connected to
the address bus. Control of the various components within the
Am2909 and Am2911 is summarized in Figure 24.

With the four PCU instruction input lines and the test condi-
tion line in -mind, 16 microinstructions were characterized
(Figure 23). The clock, microcode and test condition inputs
are presented on the left and the eight PROM outputs are
presented on the right. Instruction Of is a clear instruction
that is used in the power-up sequence to start the machine at
address 0000f, while instruction 1F is the normal execution
instruction. That is, 1F causes the PC register to be incre-
mented during each clock cycle.

There are three load instructions: Load MAR, 2f, Load PC,
3F and Load PC Incremented, 4r. Source MAR, 5F, and
Source DB, 6f, do not change the storage condition of the
Am2911’s, as the clock pulse is withheld. The internal address
multiplexer is merely used to select a source for the address
and to present it to the address bus. These first seven instruc-
tions are unconditional; the microsequencer control bits are
the same regardless of the test condition input.

The Suspend instruction, 7, is conditional, however, and will
cause the PC register to stop incrementing and the Y address
outputs to go to the high impedance condition. The suspend
instruction is used for DMA access and diagnostic and other
test conditions. The Hold instruction, 8f, is similar to the
suspend instruction. The two differences are that it is uncondi-
tional, and the Y address outputs are active.

The program modification instructions Jump, Jump-to-Sub-
routine, and Return, 9 and 10F, 11F, and 12F, respectively,
are all conditional. If the test fails — the test condition is not
true — the program continues. There are two Jump instruc-
tions — 9F selects the MAR as the source of the jump address,
and 10F selects the data bus as the jump address source.

The last three instructions, 13f, 14fF, and 15f are Loop
instructions. Begin Loop, 13F, causes the starting address for
the loop to be pushed onto the stack. The Loop command
instruction, 15F, will reference the stack for the Loop starting
address if the test condition is false and cause a jump to that
location. If the test condition is true, meaning that the loop is
complete, the command to loop is ignored and an Execute is
performed as is a Pop stack, thereby clearing the loop reference.
Another way to exit the loop is the Branch and Pop instruc-
tion, 14f. If TC is true, a branch is executed; otherwise, the
instruction is ignored and a normal Execute instruction is
performed. The loop instructions are presented here for refer-
ence only. There are no machine instructions that use them.

TEST MICROSEQUENCER
PCU INSTRUCTION N
ololm LE-A R
cp2 Ag[A3]|A2]|Aq Ag miz 3 S0 | S1 m % m
L]
t ojojo|oO 0 CLEAR oj1jofx|x|1]x]|1
t ojojo|o 1 CLEAR oj1jolx|{x|{1]x|1
t ojlojo]|1 0 EXECUTE (ADDR + (PCR)) ofj1]1]ofol1]x]|n
t ofofo]1 1 EXECUTE (ADDR « (PCR)) oj1]1]o]o|1|x]1
1 ojo|1]o0 0 LOAD MAR (MAR « (DB)) ojo|1]|]o0]O|1|X]|O
t ojfof1{o0 1 LOAD MAR ofof1flofof1]x|o
t oflof1]n 0 LOAD PCR (PCR « (DB)) tjofrrprf x|
t ojlo|1]1 1 LOAD PCR 1ol 1|11 |1 x]|1
t oj1]o0]o0 0 LOAD PCR INCR. (PCR « (DB) +1) o1 v r]x]|1
* oj1]0]0 1 LOAD PCR INCR. of1 vl fr]x|n
0 oj1]0]1 0 SOURCE MAR (ADDR « {MAR)) NO CK ofof1f{rfof1ix]|n1
0 o|l1]o0]1 1 SOURCE MAR NO CK ofofl1{1rof1]|x]1
0 oj1]|1]|0 0 SOURCE DB (ADDR + (DB)) NO CK o1 1 {1 1] 1|x|1
0 oj1j1]0 1 SOURCE DB NO CK o1l xt
t ol 1}1]1 0 EXECUTE of1f1]ofof1]x|1
t ol 1] 1]1 1 SUSPEND (ADDR + 3-STATE) 1ol 1 xf{x|1]x]|1
t 1{oflofo 0 HOLD (PCR + (PCR): ADDR « (PCR)) olof1|ofof 1] x|
t 17000 1 HOLD oloj1]o0]o]|1}|x]1
1 1{ofof1 0 EXECUTE of111jo0fo|1|x|1
t 1{o]o]1 1 JUMP REGISTER (PCR « (REG)) of1f1l1r|of1|x|n1
t 1lof 11 0 EXECUTE ofj1l1floefof1]x]|1
t 1/10[1]0 1 JUMP DIRECT (PCR « (DB)) o1l v v 11]|x]1
t 1]011]1 0 EXECUTE of1f(1]0|0|1|x|1
t 110111 1 JUMP-TO-SUBROUTINE ofjt1f1frf{1fo] 1]
t 1]1]o]o 0 EXECUTE oft1|1]ojof1]|x]|1]
t 1{1(0]o0 1 RETURN-FROM-SUBROUTINE of1{1{of1]o]o0]n
1 1{1](0]1 0 PUSH LOOP STARTING ADDRESS of1{1f{ofofo]1]1
t 1ji1{0f1 1 PUSH LOOP STARTING ADDRESS of1{1fofofo]1]n1
t 1{1{1]o0 0 EXECUTE oj1j1joflof1]x]n1
t 1110 1 BRANCH AND POP oj1{1|1]ofofo]n1
t 1{1]1 0 LooP ofjrl1|of1{1]|x]|1
t 111] 1 EXECUTE AND POP o|jt1|1]o0|0|O0]O]1
Figure 23. PCU Microinstruction Control PROM.
Address Selection Output Control
P —
OCTAL | S; So| SOURCE FOR Y OUTPUTS |SYMBOL OR; ZER OE Yi
0 L L Microprogram Counter uPC X X H z
1 L H/| Register REG X L L L
2 H L Push-Pop stack STKO H H L H
3 H H Direct inputs D; L H L Source selected by Sp S,
Ll
Synchronous Stack Control Z = High Impedance
FE pUP PUSH-POP STACK CHANGE
H X No change
L H Increment stack pointer, then
push current PC onto STKO
L L Pop stack (decrement stack pointer)

Figure.24. Am2909 and Am2911 Control Signal Summary.

31

CHAPTER Vil
MEMORY SYSTEM

The memory system is static and has a 64K-word by 16-bit
architecture. As the design goal stated, an intention to build
the processor on 9 x 12 inch printed circuit boards, a memory
partitioning scheme must be employed because a 64K x 16
memory will not fit on one card. A 16K-word by 16-bit sub-
system (Figure 25) will fit nicely, however. The Am9140
4K x 1 static RAM was chosen for this application.

Am9130 AND Am9140

The Am9130 products are high performance, low-power,
NMOS, 4096-bit, static, read/write random access memories.
They are implemented as 1024 words by 4 bits per word. The
data input and output signals are bussed together and share
common 1/0 pins.

The Am9140 products are high performance, low-power,
4K-bit, static, read/write random access memories. They are
implemented as 4096 words by 1 bit per word. The data input
and output signals use separate pins for maximum flexibility.

All interface signal levels are identical to TTL specifications,
providing good noise immunity and simplified system design.
The three-state output will drive two full TTL loads or eight
low-power Schottky loads for increased fan-out, better capaci-
tive drive and improved bus interface capability.

Operational cycles are initiated when the Chip Enable signal
goes HIGH. When the read or write is complete, Chip Enable

goes LOW to prepare the memory for the next cycle. Address
and Chip Select signals are latched on-chip to help simplify
system timing. Output data is also latched and is available until
into the next operating cycle.

Figures 26 and 27 show the block diagrams for the Am9130
and Am9140. The internal functions are similar, differing only
in the treatment of 1/0 lines and the corresponding changes in
the column circuitry to accommodate the alternate organiza-
tional structure.

Chip Enable is the master control input that coordinates all
internal functions. When CE goes HIGH, a memory operation
is initiated. When the active operation is complete, CE goes
LOW to preset the memory for the next cycle. There are no
maximum time restrictions on either CE polarity.

Notice that there are ten address lines and four 1/O lines for
the Am9130. The Am9140 requires two more addresses but
two fewer 1/O lines, so the pin configurations are nearly
identical. The address inputs are latched into the on-chip
address register by the rising edge of CE. The row addresses
propagate through the row decoder and into the storage
matrix to select one of 64 rows. The column addresses propa-
gate through the column decoder to the output of the matrix
to select the appropriate column(s) for input to the sense
amplifier(s) during a read operation or output from the write
amplifier(s) during a write operation.

\7

MS
ce ws, CSp* —————0f ¢§ MS f——————— Ms,
S O———————— CMPLT® 4k X 16 MEMORY BANK
& v | cE (16) Am140 O fmr———
mS3 cc
—A R OE 0D bo j
1.0k ::I.Ok
< 1.0k READ
3\ =
S, o— Doq seLcT
F__“,A -
15 T csy* O} cs Ms Msq
S0 O- i . 4k X 16 MEMORY BANK
f—A-, SELCT r CcE (16) Am9140 oi 2
— 4
= ! 1A R OE 0D 00 f——
Yo jo———— csp°] T
A 4 Ar2 24 TVo———csy* READ =
12-15 OMUX Y, |o osy*
Az CS,* MS
Y. . 2 —O] Cs MS;
— & o CS3 cg OkX16MEMORY BANK o
= ? r (16) Am9140 R
" SELCT* — 1 R OE 0D 00 [
Ao-11 —~ i
wsg* READ =
= mSs;*
s+ o—D0 @
MSZ. ‘Ls74 €sg3* -Of Cs Ms MS3
3 u cg 4k X16MEMORY BANK
MEMRQ* D___.Dc c al— (16) Am9140
s K R OE 0D DO
MEMRD*® READ
Wit o o 17
TOCLR* ADY =
' CMPLT*
o 16)
08 E}——4——| _DATABUS
TRANSCEIVER | 16 _J

Figure 25. Memory Subsystem Block Diagram.

32

AQ O——e=]
A10—- ROW
A2 O——e{ ADDRESS 12 DT)ORWSS 64
BUFFER i> ADDRE: i> STORAGE CELL MATRIX
A3 O——e] AND DECODERS
A4 O——on] LATCH
s 64x16 | 64x16 | 64x16 | 64x16
TIMING
CEO—=1 conTROL
REF. ROW
A60—=1 o Lmn 32 32 32 32
A7 O——e{ ADDRESS | | COLUMN
BUFFER AN avoness
A8 O— AND 57 DECODERS
A9 O—er] LATCH 16, .
#:> SAL| WA | sAL] wa |sAaL] wa |saL]wa
os| iBjos|iB|os|isB|oB| B H
CHIP 1/0 v
€S 00— SELECT CONTROL
BUFFER LOGIC
GND O—= o o o o O
OE OD WE 1ot] 1/03 1/04 MS
Figure 26. Am9130 Block Diagram.
A0 O—=
Al O—= ROW
A2 O—=| ADDRESS 12 ROW 64
BUFFERS i> ADDRESS ¢>
A3 O— AND DECODER
O——e] LATCHES
A4 STORAGE CELL MATRIX
A5 O—e x
TIMING -
CE O—=] conTROL
REFERENCE ROW
A6 O——=-}
A7 O—=1 coLumn
A8 O0—] AoDRESS | | COLUMN
BUFFERS ADDRESS I '
A9 O——e] AND 12 DECODER "
O0—] LATCHES 6
A1 7 S | e SENsE
A11 O— e AMP
outpuT| INPUT OUTPUT
e . o BUFFER | BUFFER BUFFER
G O—ef SELECT CONTROL
BUFFER LOGIC
GND O——e o [e}
OE 0D WE DATA DATA 'S
ouT IN

Figure 27. Am9140 Block Diagram.

The Chip Select input is also latched on-chip and acts as the
high order address input. It controls the input and output
buffers of the memory and allows several chips to be wired
together for increased capacity.

The Am9140 has separate single Data-In and Data-Out lines.
They may be bussed together externally if desired. The
Am9130 has four bi-directional Data 1/O lines that provide
output data during read cycles and accept input data during
write cycles.

The Read input signal controls the nature of the operation
being performed by the memory. When it is HIGH, the write
amplifiers are disabled and only a read can be executed. When

33

it is LOW during CE HIGH time, the write amplifiers are
enabled and incoming data will be written in the addressed
cell(s).

Output Enable and Output Disable inputs are used to control
the mode of the three-state output buffer(s). OE must be
HIGH and OD must be LOW in order for output data to
appear. If either OE is LOW or OD is HIGH, the data output(s)
will be off and present a high impedance interface.

The Memory Status output is a control signal that describes
the internal state of the memory. It indicates when output
data is available and valid; and it shows when the CE transi-
tions may take place.

DETAILED LOGIC

Referring again to Figure 25, the memory is organized in four
memory banks of 4K x 16. This requires 16 Am@140’s per
memgry bank. Each bank will be addressed with address bus
bits, Ag-11, which are common, and by a ghip select bit,
CSg-3, which is unique to each bank yet common within the
bank. The DC address current parameter is mjnimal with a
maximum of 10uA per line per device; however, with an input
capacitance of 9.0pF per device the AC load is more signifi-
cant. For this reason, a buffer has been used between the
address bus and the Am9140Q’s; a good choice for thig buffer
is the Am25LS241.

The chip select lines are driven by a 2:4 demultiplexer
(Am25LS139) whose input address is determined by address
bus lines A12 and A13. The demultiplexer is enabled by
SELCT™, which is connected to the gate, being true. SELCT*
is derived from a comparison of the two mpst significant
-address bits, A14 and A15, and two switches that reside on
each memory subsystem printed circuit board, Sp and Sj.
When the computer. system is assembled, pach memory board

in the system must be given a unique “page” address. As there

are only four pages allawed in this particular computer, the
two switches are capable of specifying the page and the two
address bits are capable of selecting the proper page. The two-
bit comparator is a pair of open collector Exclusive-NOR gates.

The memory status signals, MSg-3, are generated by taking
the logical AND of all 16 individual MS's in each row, while
MSg-3* are derived by taking the logical NOR of the same
signals.

The CCU controls the memory system with two signals:
MEMRQ*, and MEMRD*. MEMRQ*, when true, is a request
for a memory cygle. MEMRD*, when true, indicates that the
requested cycle is a read cycle; when false, a write cycle has
heen requested. Although MEMRQ* initiates a cycle request,
the Am9140 requires the chip engble signal, CE, to be true to
start a cycle. CE will be true if a memory cycle request has
been generated, and the page was selected, SELCT, and none
of the RAM's is currently completing a memory cycle, MSg-3*
are all false. This combinatorial signal STRT*, is loaded into a
D flip-flop whose Q outpyt is CE. CE is then distributed to the
chip enable controls and in turn is inverted wjth an open-
collector devicg that is connected to the ready line, RDY,
making it fdlse. When memory access has baen completed,
all of the memory status lines, MSp_3, are true, generating a
complete signal, CMPLT™. CMPLT™" resets the status flip-flop
making RDY true.

MEMRD is also gated with SELCT, precluding a faulty attempt
to write which might result in a loss of data. The derived signal,
READ, is used to control the direction of the data bus trans-
ceiver, Am25LS241’s, and the Am9140’s output enable and
read/write signals, OE and R.

CHAPTER Vi
INTERRUPT CONTROL UNIT

The interrupt control unit block diagram is shown in Figure
28. The ICU accepts interrupts from input/output devices,
processes them, selects the most significant interrupt request,
acknowledges the interrupt, and provides the address vector
for the interrupt processing subroutine in main memory. The
interrupt request is processed by an Am2914 which is sup-
ported by an Am2913. The interrupt vector is stored in an
Am29705.

Am2914

The Am2914, Figure 29, is a high-speed, eight-bit priority
interrupt unit that is cascadable to handle any number of
priority interrupt request levels. The device provides a full
vectored priority output as determined by the highest priority
interrupt request.

The key elements of the Am2914 include an eight-bit dual
rank interrupt register, an eight-bit mask register, and a three-
bit status register. The device is fabricated using advanced low-
power Schottky technology and is packaged in a 40-pin
ceramic DIP.

The Am2914 can perform 16 instructions (Figure 30), associa-
ted with interrupt control, vector read, mask register control,
and status register control. The device can be cascaded in either
a ripple mode or a parallel mode to provide high-speed priority
interrupt detection.

Circuits in the Am2914 include a group enable flip-flop that
is used as a status pointer. In larger systems, only one group
enable flip-flop will be LOW at a time. This results in inhibiting
interrupt requests in all lower priority blocks. The block in
which this enable flip-flop is LOW can be thought of as the
decoded binary levels of the more significant status register
bits.

vccl mo’o O ENINT®
—————{s 0 o= INTACs5*
g0k 3:8 |
1 (E omux |
INTRQO:7
INTERRUPT RQ* o] .
REQUEST | pe ! € o O INTACG
BUS < <
IE* ! J
'd
I 3 3
Am2914 v <
) DBO:7 VPIE 1
M
ﬁj 8 W '
°) DBO:2
I s ~— S a; o——‘—— INTAC;*
3
I3 Iy] IO Gs* 0* |
| ool 38
Gg* G4* G3* Gp* Gy* j DMUX |
lo* O <ol € [o——l—— INTAC®
Am2913] T 'y
1o — | J cc
El Ao 1 L~
INTRQS: 15 N n
L Gs* RD')
1 . \RQ
_ P ALO
= DB3 8]
LE
| — Y
(4)Am29705 RB
AmIald v A 16x16 TWO PORT
ki v 3 4 FILE B ‘7f—'<:l
M
»
s & we,
DBO:2 s oMA we, VCTRD
r 3 DETECTOR D YB OE-B YA OE-A °j
sve 1D L e
16] 1 .
DBO:15 16 16 416 16
BEN®
< DATA BUS >

Figure 28. Interrupt Control Unit Block Diagram.
35

The microinstruction set for the Am2914 priority interrupt
circuit is in Figure 30. In this instruction set, the master clear
instruction is selected as binary zero such that during a power
up sequence, the pipeline register in the microprogram control
unit of the central processor can be cleared (0000). Thus, on
the next clock cycle, the Am2914 will execute the master clear
function. This includes clearing all interrupt registers as well as
the mask register, status registers, and group enable flip-flop
except at the least significant block. The least significant group
enable flip-flop is set LOW by tieing the Group Advance
Receive input LOW. All other Group Advance Receive inputs
are tied to Group Advance Send outputs, and these are forced
HIGH during this instruction. This clear instruction also
enables the interrupt request flip-flop such that a fuily inter-
rupt driven system can be easily initiated from any interrupt.

The read vector output instruction is used to read the vector
value of the highest priority causing the interrupt. The vector
outputs are three-state drivers that are enabled onto the
VoV 1V2 bus during this instruction. When multiple Am2914's
are used, the higher order vector bits can be encoded using an
Am2913 priority encoder. This instruction also causes the
value “‘vector plus one” to be automatically loaded into the
status register. Thus, the status register always points to the
lowest level at which the user is willing to accept an interrupt.
All lower priority levels than that pointed to by the status
register are, therefore, inhibited. By loading the status register
with the value “vector plus one,” multiple interrupts at the
same priority level are inhibited. In addition, this instruction
loads the current vector value into a holding register such that
this value can be used by the clear interrupt from the vector
instruction. This allows the user to read the vector associated
with the interrupt, update the status register to any value
(possibly much higher than ““vector plus one’’), and then clear
the interrupt flip-flop in the interrupt register associated with
the vector read.

Am2913

The Am2913 was designed especially as a support component
for the Am2914 Vector Priority Interrupt Encoder. Similar to
the Am9318, Am251.S148, and Am741L.S148, the Am2913 is
an eight-input priority encoder which is used to derive the
vector for the most significant Am2914 location (Figure 33).
The vector output, Ag.2, is three-state and controlled by the
gating function G1_s.

The Am2913 is cascadable by connecting the enable output,
EO¥, to the enable input, EI*, of the next least significant
Am2913.

Am29705

The Am29704 and Am29705 are 16-word by 4-bit, 2-port
RAM'’s built using advanced low-power Schottky processing.
These RAM'’s feature two separate output ports such that any
two 4-bit words can be read from the outputs simultaneously.
Each output port has a four-bit latch but a common Latch
Enable (LE) input is used to control all eight latches. The
device has two Write Enable (WE) inputs and is designed such
that the Write Enable 1 (WE{) and Latch Enable (LE) inputs
can be wired together to make the operation of the RAM
appear edge triggered.

The device has a fully decoded four-bit A address field to
address any of the 16 memory words for the A output port.
Likewise, a four-bit B address input is used to simultaneously
select any of the 16 words for presentation at the B output
port. New incoming data is written into the four-bit RAM
word selected by the B address. The D inputs are used to load
new data into the device.

LATCH

| .

BYPASS]
1 VECTOR
P CLEAR ENABLE
i 8 INTR | 8 INTR CLEAR FLIP-FLOP
‘"TEI':";ﬂ'gD_*'q Latches [7<0] Res CONTROL 3
T 8 } I
ot 3817
3-8 VECTOR HOLD
REGISTER
~N
8 BINPUT 3 N 3 Vi
M L 88IT PRIORITY 3, {3 vector
- sus B4 MASK REGISTER [0 ENCODER I v T ouTPUT
3.817 v>s o D INTERRUPT
COMPARATOR INTR 25000557 REQUEST
GROUP ENABLE
s PARALLEL
LOGIC PARALL
INTERRUPT
e INCREMENTER ? RIPPLE
DISABLE
INSTRUCTION GROUP
ST ::ABOLE o l L - ADvANcE
e INTERRUPT
i 4 MicRo R DISABLE STATUS STATUS
INSTRUCTION D—/——j INSTRUCTION . Pty sTATus
INPUTS DECODE 3 GE FLIP-FLOP
GROUP
Si 38IT ENABLE LOWEST GROUP gi oup
cp N STATUS STATUS ENABLED
crock [1 % 8US 3 REGISTER FLIP-FLOP SIGNAL
GROUP ADVANCE
RECEIVE

Figure 29. Am2914 Vectored Priority Interrupt Encoder Block Diagram.

36

Decimal

131214l
Mask Register Functions
14 Load mask register from M bus
7 Read mask register to M bus
12 Clear mask register (enables all priorities)
8 Set mask register (inhibits all interrupts)
10 Bit clear mask register from M bus
1 Bit set mask register from M bus

Status Register Functions

9 Load status register from S bus and LGE flip-flop
from GE input
6 Read status register to S bus

Interrupt Request Control
15 Enable interrupt request
13 Disable interrupt request

Decimal
13i211lp
Vectored Output

5 Read vector output to V outputs, load V+1 into
status register, load V into vector hold register and
set vector clear enable flip-flop.

Priority Interrupt Register Clear

1 Clear all interrupts

3 Clear interrupts from mask register data (uses the M
bus)

2 Clear interrupts from M bus data

4 Clear the individual interrupt associated with the last

vector read

Master Clear
0 Clear all interrupts, clear mask register, clear status
register, clear LGE flip-flop, enable interrupt request

Figure 30. Microinstruction Set for Am2914 Priority Interrupt Circuit.

The Am29704 has open-collector outputs, and the Am29705
features three-state outputs so that several devices can be
cascaded to increase the total number of memory words in the
system. The A output port is in the high impedance state when
the OE-A input is HIGH. Likewise, the B output port is in the

high impedance state when the OE-B input is HIGH. Four
devices can be paralleled using only one Am25LS139 decoder
for output control.

The Write Enable inputs control the writing of new data into
the RAM. When both Write Enable inputs are LOW, new data

LoddddLLd

o ' 12 I3 14 15 lg 17 EI
—Q1 G3 Am2913
—adlc,
—d ¢
€0 Ag Ay A,
if 1]
ElfTo 11 12 13 14 15 1g 17| EO| Ag A7 A2 Gy Gz G3 G4 Gs|Ag A1 Az
Hlx x x x x x x x|H|L L v H H L L L ENABLED
L/H H HHHHHH|LIL L L X X x x|z z z
L|fx X X X X X X L H H H H X L X X X z z b4
L|x x x x x x v H|H|L H H X X H x x|z z z
Li{X X X X X L H H H H L H X X X H X ¥4 4 ¥4
Li{X X X X L H H H H L L H X X X X H 4 ¥4 b4
Li{x x x L H H H Hl[H]H H L
Llix x L H H H H HIN L H L H = HIGH Voltage Level
Clx v W H HHHH|A]H L L ; - :;gr,’t\g:':” Level
Ll W H HHH HH]lH]L L oL

Z = HIGH Impedance

Figure 33. Am2913 Function Diagram and Truth Tables.

Dp Dy Dz D3

A3 i T B3
16WORD BY 4.BIT
A2 ADDARESS | A TWO PORT RAM 8 ! AD,;:ESS B2
Ay —) ADDRESS ADDRESS | 8
1 DECODER i i DECODER 1
Ap Bg
APORT WE B PORT
WE,
WE,* %)4 LE
ALO* Do
4BIT 4-BIT
A-DATA B-DATA

OEA* |>O LATCH

1]

YAq YA YAy YAy

LATCH 4‘,4 OEB®

|

YBq YB; YB, YBy

Figure 34. Am29705 Logic Diagram.

WRITE CONTROL

RAM Outputs at Latch Inputs
WE; WE;, Function A-Port B-Port
L L Write D into B Adata (A # B) | Dinput data
X H No write A data B data
H X No write A data B data
H=HIGH
L=LOW
X = Don't care
YA READ
Inputs
YA Output Function
OE—-A|A-LO|LE
H X X |2z High impedance
L L XL Force YA LOW
L H H | A — Port RAM data | Latches transparent
L H L | NC Latches retain data
H = HIGH Z = High impedance
L=LOW NC = No change
X = Don't care
YB READ
Inputs
— YB Output Function
OE-B | LE
H X 4 High impedance
L H B — Port RAM data | Latches transparent
L L NC Latches retain data
H=HIGH Z = High impedance
L=LOW NC = No change

X = Don’t care

Figure 35. Am29705 Function Tables.

38

is written into the word selected by the B address field. When
either Write Enable input is HIGH, no data is written into the
RAM. The memory outputs follow the data inputs during
writing if the latches are open.

The logic diagram and function tables for the Am29705 are
shown in Figures 34 and 35, respectively.

DETAILED LOGIC

The ICU is one of the most complex subsystems in the com-
puter because of all the interaction required. The 16 interrupt
requests, INTRQQ-15*, originate in different input/output
ports and are presented to the Am2914’s for service. In the
event of an interrupt request, the signal IRQ* is generated and
transmitted to the CCU for service. When the CCU finishes the
current instruction and branches to fetch the next instruction,
the interrupt request causes a branch to the microprogram
interrupt service routine where the enable interrupt signal
ENINT™ is generated. The vector of the highest level interrupt
(INTRQ15* is the highest and INTRQqg* is the lowest) is read
out and presented to the interrupt acknowledge demultiplexers
and the interrupt service vector registers.

The interrupt service vector register file, Am29705, has its
data input and outputs connected to the data bus. The B port,
the port which selects the write address, is address controlled
by the instruction register Rq field (IR7:4), RB. The read/
write control, VCTRD, when true, causes a read and when
false causes a write. BEN* enables the B data port on to the
data bus. The A port address is the vector address generated by
the Am2914’s. During an interrupt service procedure, the A
data port output enable, AEN¥, is caused to be true, placing
the main memory interrupt service vector address on the data
bus. The data bus is monitored by the DMA detector which is,
in effect, a 16-input NAND gate. If the vector address placed
on the data bus is a FFFF1g, the service request is for a DMA
cycle. If the current interrupt request is not for a DMA cycle,
an interrupt acknowledge signal, INTAC*, is generated by a
4:16 demultiplexer made up of two Am25LS138 3:8 demulti-
plexers.

IE* |13 |12 11| 1g| MICROINSTRUCTION FUNCTION
H | X |X]| X]| X | Inhibit Instruction

L {o|o|lo]|o| Reser

L 0jo0ojo]1 CLEAR INTERRUPTS

L [V I) 1 Q CLEAR INTERRUPTS VIA M-BUS

L |Jojo]1]n1 CLEAR INTERRUPTS VIA M-REGISTER
L |[0[1]0] 0| CLEARVECTOR

L 01 o 1 READ VECTOR, STATUS « V+1

L 0|1 1 1] READ STATUS

L 0 (1 1 1 READ MASK

L 1 ojoj|o SET MASK

L 1 oo 1 LOAD STATUS

L 1 0] 1 0 BIT CLEAR MASK

L 1 0]1 1 BIT SET MASK

L 1 1 o|o CLEAR MASK

L 1 1 0] 1 INHIBIT INTERRUPT REQUESTS

L 1 1 1 1] LOAD MASK

L 1 1 1 1 ENABLE INTERRUPT REQUESTS

Figure 36. Microinstruction Format.

39

As there are two B-input Am2914's generating a 3-bit vector, a
fourth bit must be generated to resolve the ambiguity between
the two devices. The Am2913 was employed for this purpose.
Its gate inputs, G1-g, are connected to the Am2914 instruc-
tion lines, 19-3 and IE*, so that the output of the Am2813
is enabled for the read status command, | = 0110B, and |E* is
true, Only one bit of the priority encoder’s vector is needed,
and it is generated by connecting the most significant Am2914
group status signal, BS® to |1 * and the least significant block
status to lg*.

The Am2914's are also connected to the data bus, thereby
allowing the 16 bits of mask register to be read or loaded, the
interrupts to be cleared, and the status register to be read or
loaded. The instruction codes for the Am2914 are presented
in Figure 36.

CHAPTER IX
DIRECT MEMORY ACCESS

The DMA controller (Figure 37) in this machine is relatively
simple in structure and completely controlled by the CCU.
There are two 16-bit registers in the machine, a base address
register and a word counter.

The DMA initialization counter requires that the base address
register is loaded with the address of the first word to be trans-
ferred. In the same process, the word counter is loaded with
the two’s complement of the number of data words to be
transferred. The DMA interrupt service vector, FFFFg, is
loaded into the interrupt service vector register, and the trans-
fer direction flip-flop is set to the appropriate condition. 10*
in a true condition means a write into memory from the
selected input/output port, while a false condition is a memory
to input/output device transfer.

Both registers were built out of Am25LS161 four-bit binary,
synchronous counters. And the Am25LS2541 non-inverting
octal buffers were selected for address bus isolation.

When the first DMA request is generated, the proper read or
write in main memory occurs. At the end of the memory
cycle, both the word counter and the base address register
are incremented. The base address register is then pointing to
the address of the next main memory transfer, and the number
of words to be transferred has been decremented by one. This
process continues until the word counter reaches its maximum
or terminal count; TERM is true. If terminal count on the base
address register, DMOVR, becomes true, the memory has
overflowed.

Microcontrol of the DMAC consists of two load commands,
LDWC* and LDBAR¥, two increment commands, INCWC and
INCBA, an output enable control, ENADR®, and a transfer
direction, DIR. As with the other controlled subsystems, the
clock, CLK, is gated.

N (((—<] Lowe*
; ; ; ; v
16 DBI2:15), é oB8:11 Y, I 0B4:7Y, é 090,3}/4 £ cc
3) P LD P) P LD
TERM TE TC TE TC TE TC TE
- 7C Am25LS161 Am25L5161 Am25L$161 Am25L5161
PE ——I PE s—l PE ﬁl PE ’——}
¢ ¢ . ——<] Incwe
WORD COUNTER
(r (—<_] LoBAR®
- N n A
16 DB12:15 Y, é DB8: 11 Y, é DB4:7 i“ ! cnao.3%’4 I cc
8 P LD P LD P LD P Lo
2| omovr TE C TE TC TE TC TE
& ~—] TC Am25LS161 Am25L5161 Am25L8161 Am25L5161
< PE ;o—l PE v—l PE T PE ——<] incBA
—<] ENADR®
) L »
1 4 ¥ A
E BASE ADDRESS E
AM25L52541 REGISTER AM25L52541
10° =—a p—<"Jor
8{aooRs:16 8 faooRo:7
CcK
ADDRESS BUS
cLock cp3

Figure 37. Direct Memory Access Controller.

40

CHAPTER X
THE STATE MACHINE

Every computer has a predictable sequence of functions that
occurs depending upon the instruction being executed or the
automatic hardware functions being performed, i.e., interrupt
requests, control panel functions, etc. The graph depicting the
functional flow through the computer sequence is called a
state transition diagram and is implemented by execution of
the microprogram.

The state transition diagram for this computer is shown in
Figure 38. The sequence starts with a power-up initiation
function. All of the registers are cleared, the control flip-flops
are set, and, if the computer has a control panel, the machine
is probably set to a Halt condition at the end of State 1.

State 2 tests the Halt request. In its absence, the CCU performs
a memory read cycle to fetch an instruction. At the end of
the cycle, the instruction word is loaded into the instruction
register.

During State 3, the instruction is decoded, and a determination
is made as to whether this instruction is one word or two
words long. If it is a single word register-to-register, RR, or a
single cycle special function, SF, instruction, the instruction
is immediately executed and a transfer is made to State 8. If
a multiple cycle SF instruction has been encountered, the
same microinstruction is executed until the SF instruction is
satisfied. If the instruction is a two-word instruction, the CCU
fetches the operand and stores it in the Q register, then con-
tinuing to State 4.

State 4 is used to modify the operand and directly or indirectly
use it. For RX instructions, a test is made of the X field,
IRO:3, for a zero value. If X does equal zero, the address of
the second operand is in Q and must be transferred to the
MAR. If X is not equal to zero, the contents of the X-th
general purpose register is added to the contents of the Q
register and the result is loaded into the MAR. A transition
is then made to State 6.

If an immediate instruction is detected in State 4, a test for
zero is also made on X. When X does not equal zero, the
contents of the X-th register is added to the contents of the
Q register, and the result forms the second operand which is
stored in the Q register. Then transition is made to State 5,
or, if X equals zero, the transition is immediately made to
State 5.

State 5 is the execution state for R/ instructions. The only
transition from this state is to State 8.

41

POWER-UP
HALT

RESET

RUN
FETCH INSTRUCTION

ONE WORD TWO WORD

INSTRUCTION TYPE?

F
MULTIPLE
TYPE?

EXECUTE : EXE;:UTE
NO COMPLETE?

YES

RR
EXECUTE SINGLE FETCH OPERAND~Q

RX Rl

TYPE?

YES YES

X=0? X=0?
N NO
MAR «(Q) +(X) MAR<+Q Q+(Q)+(X)

T

FETCH DATA EXECUTE

m
x
m
=]
c
1
m

ENABLE |

z

TERRUPT

-G

Figure 38. Central Processor State Transition Diagram.

State 6 fetches the second operand for RX instructions from
the computed address that was previously loaded in the MAR
during State 4. The next state from State 6 is State 7 where
the RX instructions are executed.

State 8 allows the interfupt system to be enabled, and then
the CCU attempts to branch back to State 2 to fetch the next
instruction. If there has not been an interrupt, the attempt to
branch is successful; otherwise, the interrupt request must be
processed. When the interrupt has been serviced in firmware,
a branch to State 2 occurs and the interrupt service routine in
main memory is processed. Execution of a Return from Inter-
rupt instruction will allow the controller to be returned to its
pre-interrupt condition and for normal processing to resume.

CHAPTER Xi
COMPUTER CONTROL UNIT

Having defined each of the controlled subsystems in the com-
puter, and the machine instruction set, the machine instruction
formats, the ‘‘state machine”, and the microcontrol bits, the
design of the computer control unit to drive this processor is a
relatively straightforward task.

The architecture of the CCU is presented in"block diagram
form in Figure 39. The instruction register contains the current
machine level instruction that is being interpreted and executed
incrementally by the microprogram. The Op Code portion of
the instruction is presented to a mapping PROM as an address.
In turn, the output of the mapping PROM provides the micro-
sequencer with the starting address of the microprogram that
satisfies the requirements-of the current instruction.

Initially, the starting address is passed directly through the
microsequencer to the address field of the microprogram
PROM. The first microinstruction appears at the output of the
PROM some time later and is loaded into the microinstruction
register (the pipeline register) on the rising edge of the next
clock pulse. Concomitant with being passed directly to the
microprogram PROM, an incrementer inside the sequencer
adds 1 to the starting address and sets up the input to the
microprogram counter register which is loaded with ““address-
plus-one’”” by the same clock pulse that loaded the microin-

struction register. Subsequently, the source of the micropro-
gram PROM address is switched from the mapping PROM to
the microprogram counter and the process continues.

The timing, synchronization, and control logic includes the
power-up initialization hardware, the system clock, the instruc-
tion decoder for the microsequencer, conditional instruction
hardware, and the logic that allows processor asynchronous
events to be synchronized to the CPU.

Having been given permission to operate from the synchroni-
zation logic, the bus control and clock distribution hardware
gates data sources onto the data bus, and clocks data from the
data bus into controlled destinations.

INSTRUCTION DECODING

A detailed logic diagram of the microsubroutine starting
address hardware is shown in Figure 40. The instruction
register consists of two sections. First is the eight-bit Op Code
register that is made from two Am2918 two-input, quad
registers, and second is the dual operand register comprised
of two 4-bit registers, Am2918.

16-8IT DATA BUS

<

il

INSTRUCTION REGISTER

PWRFL® ——f P, 1 5 OP CODE I Ry] Ry
PNLR1® ——0f Pg L
PNLR2® ——QI Pg >& =
PNLR3®* ——Ol P4 ZO ,
OMARD® ——f Py Q§ A T As F—= Ra
DMAWR® ——(f P, TS Rssgugrgrn
INTRQ* ——Qf P, Lécfc
FETCH* [CRy —
0 1:2 MULTIPLEXER R
2 e Ra
1 f
MAPPING PROM
| TC
*ﬁ 22 |—= TOCLR®
12 §§ | cLock
gé'o‘ |—e- OPREQ*
R MICROSEQUENCER A $ZE
12 9 H3 3 pae OPACK*
x
) ‘z’g ja— RUN*
Z
12 5% |—e waLr -
le— MRsET* g =AW
MICROPROGRAM PROM a5 p—=rov
2 2 |—= mem
ok e icu
Aea 85%’ — DMA
4 8 u e 1/0
@ 8 p—e CCU
MICROINSTRUCTION REGISTER 3 - PNL
FIFFFFTT ¥
L
8

ALU PCU MEM ICU DMA PNL CR; CRy

Figure 39. Computer Control Unit Block Diagram.

42

DATA BUS

S

4
DBg_1q

4
j DBy DBg_
mo'D-——Dc 121 1 1 1 o-3
D
Am2018 Am2918 Am2918 Am2918
cP Q cp Q cp o cp Q
PWRFL® ——Of P7 1 1 |] po<e Ry
PNLR1® ——Of P6 3
PNLA2 —Ofs o A 5) 4 R
> 1
PNLRI* ——OfPs & _L T4 4 4 ¢ 7
DMARD* ——0) P3 'E =
oMAWR® ——P; < A 8 A 8
2 cs fo- S Am25LS167 S Am25LS1S7
INTRQ* ——Of Py Y \
PNLR4* ——f Py
£l
4 b MADDR,_; 44 MADDRy_3 Ccs)

s Lo

A A

[s

|| AT

Am25LS151

cs2 Am20761 cs2 Am20761
3.0k cst cst
1 L 1

4 ($400Rg_11 =

4
SADDR4_; =

43
cs2 Am29761
cs1
T 4
J’swono_a

2y

SABDRg_ 1

4

Figure 40. Microsubroutine Starting Address Block Diagram and Test Condition Multiplexer.

At the beginning of an instruction sequence, the machine
instruction is parallel loaded into the instruction register,
and the Op Code is decoded to provide a starting address as
described above. And, during the entire execution of the
instruction, interrupt requests are disabled. But when the
instruction is completed, the microcontroller executes a micro-
program that fetches the next instruction and inserts it into
the instruction register. Between the end of the last instruction
and the beginning of the instruction fetch, routine machine
level service requests are enabled.

Machine level service requests include power-fail interrupts,
PWRFL*, control panel service requests, PNLR1*, PNLR2%,
and PNLR3*, an attempt to DMA read or write, DMARD* or
DMAWR?*, stored program interrupt requests, INTRQ*, and
the instruction fetch itself, FETCH®. Each of these functions
has a separate microprogram with a unique starting address.
Presented in order of priority, these service requests are
encoded in an Am25LS148, and the three-bit vector is selected
as the input to the Op Code multiplexer. Op Code/micro-
interrupt selection is accomplished when FETCH®* is true
causing the priority encoder gate select, GS*, to go low, there-
by switching the Am2918 output multiplexer. Three bits of
vector and five bits of ‘0" are inserted into the Op Code
multiplexer leaving Op Codes 0046 through 074¢ unavailable
for machine instruction assignment.

Generating machine level service request addresses in this
manner has two advantages: speed and a smaller microprogram
word width. While the last microinstruction for the current
machine instruction is being executed, the fetch signal may be
enabled, and the first instruction of the most significant service
routine may be readv to be loaded into the microinstruction
register by the very next clock pulse. If the proposed tech-
nique, or one similar to it, is not implemented, a series of test
and branch instructions must be executed. This technique

43

saves microinstruction word width because the PROM field
would have to be 12 bits wider to provide a branch address
at the same time that other machine functions were being
exercised.

During the instruction fetch and class determination functions,
it is necessary to detect the value of the X register field for RX
and Rl instructions for zero. If this 4-bit field is non-zero the
contents of the specified register is added to the second
operand to calculate an effective address for the data word to
be used. Figure 40 allows for the testing of the zero condition
as well as other signals used for conditional microprogram
control.

The register select logic shown in Figure 41 is provided to
allow for the instruction operand flexibility shown in the
defined instruction set of Chapter |V. These multiplexers allow
the source and destination registers for the Am2901 ALU and
Am29705 ICU/DMA circuits to be selected from either instruc-
tion register operand field or from one of two fields in micro-
program memory. Providing the two register select fields in
microprogram memory allows algorithms to be executed on
the system,

MICROPROGRAM SEQUENCING

The Am2909 microprogram sequencer was described in some
detail in Chapter V|, and a block diagram is provided here in
Figure 42 as a reference to be used with Figure 39. Three
Am2909’s are being used to provide an address range of 12
bits or 4096 words of microprogram storage. All three have
their equivalent control lines connected together and all 12
OR inputs are tied to ground. The least significant carry-in
signal is tied to V¢ and all interstage carry-outs and carry-ins
are appropriately connected.

Rlg ——1co R2%) —1c0
3 3
Mo —e b, i v RB
2 RA,
CRlg ——f1c2 & R e p— T} & °
Rlg —f1c3 < 16 O-T Rlg ——1e3 < 16 Jo—
R1y 200 R2y ——2c0
Q w
R2y 1 5 Ry o1 5
= 2Y RA a 2y RB
CR1y w2 & T Ry L Jac2 g !
R1, 203 < 26 H Ry —J2ca < 26 jo—4
R2, —]
R1, 0 o 2 ——c0 o
"% o E 1Y RA. i E 1Y RB
2
CR1, w2 § 2 cRy —Jic2 §
<
Rl 3 < e Rl —4J1c3 16 jo—4
Riz 20 R23 —f—2c0 ,
2 b
R23 x5 Rl3 ——2c1 G oy .
2y RA
CRI, 202 ﬁ 3 cR2y —L {2 § 3
<
R13 23 ¥ 26 jo—d Rl3 —— 2c3 26 jo—¢
— —
RADDR 2 1 J
Figure 41. Instruction Register/Microprogram

Register Select Logic.

The direct inputs are tied to the outputs of the starting address
PROM’s; and the register inputs are tied directly to the outputs
of the microprogram PROM'’s, in the branch address field,
thereby forming part of the microprogram register. All three
RE™'s are connected to ground causing the address register
inside of the Am2909 to be loaded on every clock pulse.

A 32 X 8 PROM, Am29751, Figure 43, is used to control the
microsequencers. Of the five address inputs, four are used as
instruction bits and the fifth is used as a qualified (by the
output, O7) test condition. The other seven outputs are used
for control of FE*, PUP, SO, S1, and ZERO™*, and for genera-
tion of OPREQ* and HLTRQ*. OPREQ* is used for functions
thay may have mixed speeds or be asynchronous such as
memory or 1/O reading and writing. HLTRQ* is used to halt
the processor. The control signals for the microsequencer
PROM come from an Am25LS161 which is the least significant
four bits of the microinstruction register. This device was
chosen for two reasons: during the power-up sequence it may
be cleared to *0,” and with its terminal count gate it will
detect the presence of all “1’s” in the register. The terminal
count detector generates the FETCH* condition.

The system clock is one-half of a 74LS124 VCO. Because of
the speed and need for accuracy in this application, the VCO
is being crystal-excited by a 5BMHz series resonant device. The
turn-on clear signal, TOCLR®, is generated by an Am555 timer
using an RC time constant (t = 1.1RC) and should have a time
constant of 100msec or greater for most systems.

44

—
LR (Am: PUSH/POP FILE ENABLE
reisten |
ENABLE
= ADDRESS REG/
RE >—F—=] STACK
| HOLDING REG POINTER
| DANDR ‘
4 CONNECTED
ON Am2911
| onLy 4
| 4XaFILE
oirect |
INPUTS . ’_-04—-_<
4 4 cLock
=4 !
D AR FowpC
Sp D]
MICROPROGRAM
8> MULTIPLEXER =1 counter recisTER
— X X X X
Am2909 ONLY | 0 ! 2 3
ORy
| OR, I
1 or; >__:__
[o8
4
ZERO
INCREMENTER |—
ouTPUT
CONTROL
OE
Yol M1 Y2 Y3 Cq Cha

A rather powerful microinstruction set is summarized for the
Am2909 in Figure 44. The inputs to the control PROM are
shown on the left, and the output control signals are shown on
the right. Unconditionally occupying the zero-th position is
the instruction RESET. This instruction causes the address
out of the Am2909 to go to “0.” The second instruction is
EXECUTE which is also unconditional. EXECUTE selects
the microprogram counter as the source of address informa-
tion. EXECUTE is the default condition for most of the
conditional instructions.

There are two jump and two jump-to-subroutine instructions
that reference either the direct inputs or the register inputs.
There are two return instructions, a classical RETURN for
inline programs, and a return with a LOOP default condition
causing the subroutine to loop until the return condition
is true.

There is an unconditional PUSH instruction for initializing a
loop, a BRANCH and POP instruction that allows an escape
from a loop without exiting from the bottom. Both condi-
tional and unconditional loops are provided. An unconditional
POP is also provided to clear a loop condition or an unwanted
return address.

HALT is conditional and causes the CPU to freeze until there
is a manual intervention or the primary power is cycled off
and on. EXECUTE ASYNCHRONOUS and EXECUTE and
FETCH are both unconditional and were discussed above.

FROM LSB's OF
MICROPROGRAM MEMORY
)iy
- LOAD Dg Dy D, Dy
Vee cLK cP
5.0MHz Am25LS161 TC FETCH
TOGLR* —O] CLR
Qp Q; Q; Qg FETCH®
P Vee
1.0k 338k
< o 22 |
2 15 Ay 0g }—— re*
3 18 A3 Oy f—— pup
74124 ¥ F— cLock A 02 So
L
39Kk 1ok Ay 03 s,
<
Am20751 0, 26RO
€
TC Ag 0Oy HLTRQ®
6 [8 |o
Og OPREQ*
1 E 07
= = TOCLR*
VCC -
1.0k
100pF
R
J Q J Q HALT
7418112 748112
. RUN®
“LTR‘]‘@ Am602 c |-—1 c
= a >-—| >o—« a K a HALT®
Vee
cLock
TOCLR® cLock cLK
<b
<R Vee
< v
ce OPREQ* —— 4 a WAIT®
MRSET* ' ' TRIG. OUT 7418112
l AmSS55 30k crock —c
c THR.
OPACK* af— warr
GND CLR
TOCLR® -—?
Figure 43. Timing, Synchronization and Control Logic Schematic.

The general form of the bus functional control logic is shown
in Figure 45. There are three bits of data bus source and three
bits of data bus destination information is provided. The
source decoder gates information onto the data bus while
the destination decoder distributes clock pulses to transfer the
data from the data bus to a storage device.

Figure 46 shows an actual set of clock distribution and output
gate control logic that will satisfy the requirements of the CPU.
Signals BSRCg_» control the data bus source and BDST(_o
control the data bus destination. The derived signals are dis-
tributed to the various subsystems.

MICROPROGRAM FORMATTING

The microinstruction register of Figure 39 shows all of the
control bits necessary to implement all of the control func-
tions for all of the controlled elements. If summed, the total

is 76 bits. A microinstruction word that wide would require a
lot of PROM’s, and a lot of registers, and a lot of printed circuit
board room. This might be acceptable for very high-speed
processors or even desirable for very flexible machines. For
almost all applications, however, there is a cost/performance
trade-off.

The process of narrowing the microinstruction word is called
formatting. The first step in formatting is to determine which
functions are desired or required to go together. Three ex-
amples of formatting are shown in Figure 47. These formats
require 48-bit wide microinstruction words. The word width
may be further shortened to 40 bits if it is deemed undesirable
to do algorithm control purely from microcode.

The decision to use formatted microwords or unformatted
microwords is up to the designer. In an unformatted system,
the microinstruction will not only be wider than in the for-
matted words, but a significant number of the bits will not be

45

oz |n
al3(5|m o | ™
MICROCODE TC INSTRUCTION Slalalnx|le|&lc|m
2|0 |0 |9 v
* *

Ag| A3 | A2 | Ag Ag 07| 06| 05]04]03|02]09| Op
0 0 0 0 0 RESET 0 1 1 0 X X X 1
0 0 0 0 1 RESET 0 1 1 0 X X X 1
0 o] 0 1 0 EXECUTE 0 1 1 1 0 0 X 1
0 0 0 1 1 EXECUTE 0 1 1 1 0 0 X 1
0 0 1 0 0 EXECUTE 1 1 1 1 0 0 X 1
0 0 1 0 1 JUMP-THROUGH-REGISTER 1 1 1 1 0 1 X 1
0 0 1 1 0 EXECUTE 1 1 1 1 0 0 X 1
0 0 1 1 1 JUMP DIRECT 1 1 1 1 1 1 X 1
1] 1 0 0 0 EXECUTE 1 1 1 1 0 0 X 1
0 1 oo 1 JSB-THROUGH-REGISTER 1 1 1 1] 1 1 0
0 1 0 1 0 EXECUTE 1 1 1 1 0 0 X 1
0 1 0 1 1 JSB DIRECT 1 1 1 1 1 1 1 0
0 1 1 0 0 EXECUTE 1 1 1 1 0 0 X 1
0 1 1 0 1 RETURN 1 1 1 1 1 0 0 0
0 1 1 1 0 LOOP 1 1 1 1 1 0 X 1
0 1 1 1 1 RETURN 1 1 1 1 0 0 0 0
1 0 0 0 0 PUSH 0 1 1 1 0 0 1 0
1 0 0 0 1 PUSH 0 1 1 1 0 0 1 0
1 0 0 1 0 EXECUTE 1 1 1 1 0 0 X 1
1 1] 0 1 1 BRANCH AND POP ' 1 1 1 1 0 1 0 0
1 0 1 0 0 LOOP 0 1 1 1 1 0 X 1
1 o 1 0 1 LOOP 0 1 1 1 1 0 X 1
1 0 1 1 0 EXECUTE AND POP 1 1 1 1 0 0 0 0
1 0 1 1 1 LOOP 1 1 1 1 1 0 X 1
1 1 (1} 0 0 POP 0 1 1 1 0 0 0 0
1 1 0 0 1 POP 0 1 1 1 0 0 0 0
1 1 0 1 0 EXECUTE 1 1 1 1 0 0 X 1
1 1 0 1 1 HALT 1 1 0 1 0 0 X 1
1 1 1 0 0 EXECUTE ASYNC. 0 0 1 1 0 0 X 1
1 1 1 0 1 EXECUTE ASYNC. 0 0 1 1 0 0 X 1
1 1 1 1 0 EXECUTE AND FETCH 0 1 1 1 1 1 X 1
1 1 1 1 1 EXECUTE AND FETCH 0 1 1 1 1 1 X 1

Figure 44. Am2909 Microprogram Instructions and PROM Pattern.

used during any given microinstruction. The effect to be
considered is the fact that there is a lower (usually signifi-
cantly) ROM efficiency and greater flexibility for unformatted
microinstructions in comparison to formatted microinstruc-
tions. Further, formatted microinstruction storage will gener-
ally be deeper (require a greater address range) than the
unformatted equivalent whereas the unformatted micro-
instruction will be wider than the formatted equivalent. The
use of either technique necessitates the consideration of the
mechanical layout problems in the system, package count, and
power requirements, The reason that these trade-offs are
important can be shown by example: sizing estimates for the
entire instruction set shown in this document are 160 ROM
words unformatted versus 210 ROM words formatted, with
microinstruction widths of 76 bits and 48 bits, respectively.

46

Let us consider the industry standard 256 x 4 PROM. Both
formatted and unformatted versions of the microcode will fit
into the depth, 256 words, but due to the additional width,
the unformatted version requires 19 PROM packages versus
the formatted 12 PROM packages. The formatted version not
only saves seven 16-pin PROM packages, but five to seven
square inches of printed circuit board for the seven 16-pin
pipeline microinstruction registers for a total savings of 10 to
14 square inches and a total power savings of about 1.1 typical
to 1.7 maximum amperes. Clearly, performance needs to be
a primary factor in the decision process for the final design.
A reproducible microprogramming form is included here,
Figure 48, to allow various instructions and techniques to
be evaluated using as a base the microprogramming examples
of Figure 18.

Vee
DATA BUS SOURCE A Isusen o1 valy ALY
SUBSYSTEM o —
o LRA®
vee BSRCO n NOP
=="Ja a YajooP
. ICUR®
|._. — 8SRCY Fg a3 Vio—
BSRC2 ¢ % YoloPNLRS
< IOR*
lo— OE* Y Ysjo—
8SRC ALt on velo?NLR? ALUEN-
7 38 P WAIT PNLR1®)
3 oL 131 vojo PN
jo— g
WAIT > »2
wAT b H :D,__
HALT
—O) o—
Vee CLK
L— =
Gk | cLockeo
CIRCUIT
o—
80ST
—+1 s P— DATA BUS DESTINATION
3 | oecooen |, SUBSYSTEM
o—
WAIT
——O lo——
HALT
—9 o—

Figure 45. Data Bus Control Logic Technique.

Figure 46. Bus Control and Clock Distribution Logic.

ARITHMETIC LOGIC UNIT COMPUTER CONTROL UNIT
CR1 CR2 PCU MEM
COND | CARRY CNTRL| SHIFT CNTRL lo—5 's,7,8 BUS CONTROL |RADDR ul
47 4a5la4 a0l39 35134 20128 26125 22121 18117 14113 12l 6ls al3
a) Arithmetic and Program Control Format
ALU COMPUTER CONTROL UNIT
IcU DMA CR1 PANEL PCU MEM
l6,7,8 BUSCONTROL |RADDR ul
47 a3la2 35134 29128 26|25 2021 1817 14113 12l els als
b) Interrupt, DMA and Control Panel Format
ALU
BRANCH ADDRESS cR1 TEST pcu | mem COMPUTER CONTROL UNIT
16,7.8 COND BUSCONTROL |RADDR| i
47 36135 20128 26125 22121 18117 14113 121N eéls al3

¢) Microsequence Program Modification Format

Figure 47. Microprogram Formats.

47

